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Figure 1. Visual comparisons with Instant3D [7].

A. Appendix
A.1. More Results

Quantitative Comparisons. In Tab. 1, we use CLIP [11]
similarity to quantitatively evaluate our method. The results
of other methods in the table come from the concurrent In-
stant3D [7] paper. The results of Shap-E [4] come from
the official source, while DreamFusion [9] and Prolific-
Dreamer [15] results come from implementation by three-
studio [2]. The implementation version of DreamFusion
is shorter in time than the official report we mention in
the main text. During the evaluation, we use a camera ra-
dius of 4, an elevation of 15 degrees, and select 120 evenly
spaced azimuth angles from -180 to 180 degrees, resulting
in 120 rendered images from different viewpoints. We fol-
low the Instant3D settings, randomly selecting 10 from the
120 rendered images. We calculate the similarity between
each selected image and the text and then compute the av-
erage for 10 selected images. It’s worth noting that when
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other methods are evaluated, 400 out of DreamFusion’s 415
prompts are selected. This is because some generations
failed, so our method is disadvantaged during evaluation on
all 415 prompts from DreamFusion. We use two models,
ViT-L/14 from OpenAl [10] ! and ViT-bigG-14 from Open-
CLIP [3, 13] 2, to calculate CLIP similarity. Our method is
superior to all methods except ProlificDreamer, but it is 40
times faster than ProlificDreamer in generation speed. As
shown in Fig 1, our method shows notably better quality
and details than a concurrent work Instant3D but the CLIP
similarity increases marginally.

Generation with Ground. When initializing, we add a
layer of point clouds representing the ground at the bottom
of the generated point clouds. The color of the ground is
randomly initialized. Then, we use the point clouds with the
added ground to initialize the 3D Gaussians. Fig. 2 shows
the results of the final 3D Gaussian Splatting [5].

Diversity. In Fig. 3, we demonstrate the diversity of our
method in generating 3D assets by using different random
seeds for the same prompt.

Generation with More Fine-grained Prompts. More re-
fined prompts are used to generate 3D assets, as shown in
Fig. 4. It can be seen that Shap-E [4] generates similar re-
sults when given different descriptions of the word “axe” in
the prompt. However, our method produces 3D assets that
better match the prompt.

Automatically Select A Human Model. As shown in
Fig 5, we attempt to use CLIP to guide the selection of the

Uhttps://huggingface.co/openai/clip-vit-large-patch14
Zhttps://github.com/mIfoundations/open_clip



Table 1. Quantitative comparisons on CLIP [11] similarity with other methods.

Methods ‘ VIiT-L/14 t ViT-bigG-14 1 Generation Time |
Shap-E [4] 20.51 32.21 6 seconds
DreamFusion [9] 23.60 37.46 1.5 hours
ProlificDreamer [15] 27.39 42.98 10 hours
Instant3D [7] 26.87 41.77 20 seconds
Ours 27.23 £+ 0.06 41.88 4+ 0.04 15 minutes
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Figure 2. Results of generation with ground.
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Figure 3. Results of the diversity of our method.

initialized human body model, by computing the similar-
ities between images rendered from the generated SMPL
models and the text prompt. We can achieve good render-
ing effects on various human body models. It would also be
a promising direction to extend the assets to dynamic ones
with the sequence of generated human body models.

A.2. More Ablation Studies

2D Diffusion Model During the process of optimiz-
ing 3D Gaussians with a 2D diffusion model, we per-
form ablation on the 2D diffusion models we use,
specifically stabilityai/stable-diffusion-2-1-base [12] * and
DeepFloyd/IF-I-XL-v1.0 *. Fig. 6 shows the results of

3https://huggingface.co/stabilityai/stable-diffusion-2- 1-base
“https://huggingface.co/DeepFloyd/IF-I-XL-v1.0

the ablation experiment, where it can be seen that the 3D
assets generated using the stabilityai/stable-diffusion-2-1-
base have richer details.

Box Size in Point Growth In Fig 7, we conduct an abla-
tion experiment on the box size, where a larger box leads to
a fatter asset along with a more blurry appearance.

A.3. More Discussions

Limitations Introduced by the 3D Datasets. Fig 8
shows the generation results of complex prompts. The
domain-limited 3D diffusion model can only generate parts
of the desired object with rough appearances. Our method
completes the remaining part and provides finer details by
bridging the domain-abundant 2D diffusion model.



Shap-E GaussianDreamer (Ours)

7T

Viking axe, fantasy, weapon...

An camouflag Viking axe.

Figure 4. Results of generation with more refined prompts.

Recent Works. We discuss with more related work. Our
focus is to connect the 3D and 2D diffusion models, fusing
the data capacity from both types of diffusion models and
generating 3DGS-based assets directly from text. Dream-
Gaussian [14] finally generates mesh-based 3D assets from
an image or an image generated from text, which can be or-
thogonal to our method. There is a possibility of a combina-
tion in the future. NerfDiff [1] uses a 3D-aware conditional
diffusion to enhance details. DiffRF [8] employs 3D-Unet
to operate directly on the radiation field, achieving truth-
ful 3D geometry and image synthesis. 3DDesigner [6] pro-
poses a two-stream asynchronous diffusion module, which
can improve 3D consistency.
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