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1. Further Analysis
1.1. Limitations of AD Methods Based on KL

In this section, we further analyse the effect of KL on AD.
When using Kullback-Leibler (KL) as the loss function,
we expect the output probability distribution of the student
model to be close to the output probability distribution of
the teacher model. KL is defined as follows:

KL(P ∥ Q) =
∑

iP (i)log(
P (i)

Q(i)
), (1)

where P and Q are two probability distributions. Within the
context of AD, P typically denotes the output probability
distribution of the teacher model, whereas Q corresponds
to that of the student model.

Below are a few key points that illustrate why the use of
KL may harm the performance of the student model when
the performance of the teacher model increases dramati-
cally:

Deterministic teacher models:
The KL equation (Eq. 1) can be reformulated as:

KL(P ∥ Q) = H(P,Q)−H(P ), (2)

where H(P,Q) = −
∑

iP (i)log(Q(i)) represents the
cross-entropy and H(P ) = −

∑
iP (i)log(P (i)) represents

the entropy of the teacher model output. The probability
distributions of the teacher models with different abilities
on clean and adversarial examples are presented in Figure 1.
From this, we can observe that the higher the ability of the
model, the higher its confidence level for a particular cat-
egory, with the probability distribution of the correspond-
ing category converging to 1, while the probabilities of the
other categories remain close to 0. This indicates that as the
confidence level of the teacher model increases, its output
entropy H(P ) will gradually approach 0. At the same time,
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the probability of the non-target category in P also tends to
0, while the probability of the target category is close to 1.
In this case, the KL dispersion essentially evolves into the
cross entropy in the hard-labelled environment. This im-
plies that the more capable the teacher model is, the more
the knowledge distillation process may tend to degenerate
into a traditional adversarial learning process based on hard
labels, which would make it difficult for the student model
to effectively learn from the teacher model. In particular,
when the predictive confidence of the teacher model is ex-
tremely high (regardless of whether its predictions are ac-
curate or not), this may provide misleading labelling infor-
mation to the student model, which in turn reduces learning
effectiveness.

Temperature adjustment may not be sufficient:
Modifying logits using temperature T redefines the soft-

max function as:

Softmax(zi) =
e

zi
T∑

j e
zj
T

. (3)

For T > 1, this adaptation yields a more uniform prob-
ability distribution. However, it isn’t universally benefi-
cial. An elevated T can diminish the teacher model’s dis-
tinct ”knowledge”, depriving the student model of crucial
learning cues. For categories in which the teacher model
is otherwise confident, high temperatures can greatly re-
duce the probability of these categories, which may result
in the student model not being sufficiently incentivised to
mimic these deterministic predictions. Hence, augmenting
the temperature T doesn’t invariably enhance the student
model’s learning, especially when juxtaposed with a supe-
rior teacher model.

As previously mentioned, when the student model’s ca-
pability is far inferior to the teacher model, emphasizing
exact matching might lead to a decline in the performance
of the student model. In contrast to this, as shown in Fig-
ure 2, we are not concerned about the exact probability val-
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Model Teacher-1 Teacher-2 Teacher-3 Teacher-4

Clean 83.53% 87.33% 88.54% 92.23%

Model Teacher-1 Teacher-2 Teacher-3 Teacher-4

AA 56.66% 60.73% 64.20% 66.56%

Figure 1. Probability distributions of different teacher models on clean and adversarial samples for the ’Airplane’ category in the CIFAR-
10 dataset. ’Clean’ represents accuracy on clean samples. ’AA’ indicates accuracy under AutoAttack. Teacher-1 employs ResNet-18,
Teacher-2 employs WRN-28-10, Teacher-3 employs WRN-70-10, and Teacher-4 employs WRN-70-10 with additional training data.
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Figure 2. Difference between our SmaraAD and existing KD
methods.

ues given by the two models; instead, we are interested in
the similarity in the ranking of their predictions. The core
idea of this method is: when the student model’s ability is
significantly below that of the teacher model, we shouldn’t
expect the student model to perfectly imitate the predictions
of the teacher model. Instead, we hope the student model
can capture the predictive trend of the teacher model.

This means our approach encourages the student model
to learn more generalized and robust features, rather than
overly focusing on mimicking every detail of the teacher

model’s output predictions. This might lead to better gener-
alization performance in practical applications.

1.2. Analysis of γ

When we consider using the sigmoid function to simulate
”soft ranking”, the parameter γ plays a role in adjusting the
slope of the sigmoid function. We can delve deeper into
how this parameter affects SmaraAD.

Firstly, let’s revisit the form of the sigmoid function:

σ(z) =
1

1 + e−z
. (4)

When z is very large, σ(z) approaches 1; when z is very
small (largely negative), σ(z) approaches 0. Now, let’s con-
sider our ”soft ranking” in terms of z:

z = γ(x− y) (5)

where γ is a positive parameter. When γ is large:
• If x > y, then z becomes very large, thus σ(z) is close to

1.
• If x < y, then z becomes very small (largely negative),

thus σ(z) is close to 0.
Hence, when γ is very large, the output of the sigmoid

function approaches that of a traditional hard ranking. In
Figure 3, we show the effect of r on Spearman based on soft
ranking.



1 5 10 50 100 500 1000 5000

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

Co
rre

la
tio

n

 -0.60

 0.70

Spearman w/ soft ranking
Spearman w/ hard ranking
Spearman w/ soft ranking
Spearman w/ hard ranking

Figure 3. The figure illustrates the impact of the hyperparameter γ on two different Spearman correlation coefficient measurement methods.
The red and blue colors represent two distinct sets of data. Solid lines indicate the Spearman correlation coefficients using soft ranking,
while dashed lines represent the original Spearman correlation coefficients.

2. More Experiments
2.1. Details of Database

The CIFAR-10 and CIFAR-100 datasets are commonly em-
ployed for assessing adversarial robustness. CIFAR-10
comprises 50,000 training and 10,000 test images, spanning
10 distinct classes, each of size 32 × 32 pixels. CIFAR-
100, while maintaining the same image counts and sizes as
CIFAR-10, encompasses 100 different classes.

2.2. The Effect of Alleviating Robust Overfitting

Previous research [3] explored the relationship between ro-
bust overfitting and the weight loss landscape in Adversarial
Training (AT) methods, revealing that a flatter weight loss
landscape reduces the likelihood of robust overfitting dur-
ing training. To further investigate the effectiveness of our
proposed method, we plotted the weight loss landscapes for
various AD and AT methods. As illustrated in Figure 4, our
findings indicate that our method generates a flatter weight
loss landscape, thereby mitigating robust overfitting. This
aligns with the analysis of AD methods presented in [3].

2.3. Stronger Teacher

In this section, we employed a more powerful teacher model
to validate the effectiveness of SmaraAD. The performance
of the teacher model, as well as our method compared to
other AD methods, is shown in Table 1. From the exper-
imental results, it can be seen that when confronted with a
stronger teacher, our approach further enhances the robust-
ness of the student model, while other methods result in a
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Figure 4. loss landscape for different methods.

decline in the performance of the student model.
Furthermore, we observed that, despite a significant im-

provement in the robustness of the teacher model, our
method did not noticeably enhance the robustness of the stu-
dent model. This is because the teacher model was trained
with an additional dataset, while our method was trained
on a standard dataset and did not utilize additional gener-
ated data. In real life, if the teaching materials used by the
teacher and the student differ, it would similarly affect the
effectiveness of the teacher’s instruction. Therefore, dur-
ing the adversarial distillation process, we also utilized the
same generated data that was used during the training of the



Table 1. Performance of different AD methods under a more pow-
erful teacher model. The maximum adversarial perturbation is
ϵ = 8/255. The best results are boldfaced, and the second best
results are underlined.

Method Clean PGD C&W AA
Teacher 92.44% 70.06% 68.30% 67.12%
RSLAD 83.87% 51.18% 49.63% 47.68%
AdaAD 84.31% 51.88% 50.54% 48.63%

SmaraAD 87.37% 59.32% 58.89% 53.92%
SmaraAD (w/ generated data) 89.35% 65.29% 64.63% 59.67%

Robust teacher Student trained by SmaraAD Student trained by Traditional AD

Figure 5. Decision boundaries for teacher models, student models
trained by SmaraAD and student models trained by traditional AD.

teacher model. The experimental results show that when
training with the same data as the teacher model, the ro-
bustness of the student model was further improved.

2.4. Decision Boundary of the Model

We explored whether the student model actually grasped the
decision-making process of the teacher model during adver-
sarial distillation. Figure 5 visualises the decision bound-
ary for a toy problem. Here, the randomly generated train-
ing data are represented as coloured dots, while the boxes
identify the desired robustness radius l∞ . The background
colour then represents the classification region of the net-
work. If the box around a training point contains multiple
colours, it indicates that the training point is vulnerable to
attack. With these decision boundary maps, we observe that
SmaraAD learns the decision-making process of teacher
models more efficiently, whereas traditional AD methods
are not as good at extracting robustness from robust teach-
ers.

2.5. Comparison with the Method of Feature Distil-
lation

In the field of knowledge distillation, feature alignment is
a commonly used strategy [1, 2], aiming to transfer knowl-
edge from the teacher model to the student model. Fea-
ture alignment focuses on matching the internal feature rep-
resentations of the teacher and student models, typically
achieved by minimizing the differences in their intermediate
layer outputs. This method primarily targets the alignment
of low to mid-level features, which may not fully capture the
higher-level decision logic of the teacher model, and feature
alignment might lead the student model to replicate some

Table 2. Comparison with feature alignment.

Method Clean PGD C&W AA
Feature Alignment 85.53% 54.15% 53.72% 50.94%

Attribution Region Alignment 85.77% 55.70% 54.40% 52.36%

irrelevant or unnecessary features. In contrast, our pro-
posed attribution region alignment focuses on the higher-
level decision-making process, aiming to align the visual
areas the model focuses on when making classification de-
cisions. This not only facilitates the student model’s absorp-
tion of knowledge at a higher level but also helps the model
learn the attention distribution and decision patterns of the
teacher model, thus more closely mirroring the high-level
abstraction and decision logic of the teacher model. We
compared our method with feature alignment, and the ex-
perimental results are shown in Table 2. The results demon-
strate that our proposed attribution region alignment outper-
forms the feature alignment approach.

The advantage of attribution region alignment lies in
its provision of a more direct and fine-grained approach
to mimicking the decision-making process of the teacher
model. By guiding the student model to focus on the same
key areas as the teacher model, this method helps the stu-
dent model not only replicate the outputs of the teacher
model but also understand and mimic the mechanisms be-
hind its decisions. This focus on high-level features and
decision logic, especially in complex visual tasks, signifi-
cantly enhances the generalization ability and performance
of the student model. Moreover, by learning the atten-
tion mechanism of the teacher model, attribution region
alignment also enhances the adaptability and robustness of
the student model in dealing with novel and complex data.
Therefore, although feature alignment remains effective in
some scenarios, attribution region alignment demonstrates
its unique superiority in simulating the advanced decision-
making capabilities of the teacher model.

3. Pseudo-Code

The pseudo-code for our method is shown in this section.

Algorithm 1 Soft Rank

1: function SOFT RANK(x, β)
2: Initialize soft ranks as an empty list
3: for each element xi in x do
4: rank ←

∑
sigmoid(β × (x− xi))

5: Append rank to soft ranks
6: end for
7: return soft ranks
8: end function



Algorithm 2 Slack Matching

1: function SLACK MATCHING(x, y, β)
2: soft ranks x← SOFT RANK(x, β)
3: soft ranks y ← SOFT RANK(y, β)
4: n← length of x
5: d←

∑
(square(soft ranks x− soft ranks y))

6: ρ← 1− 6×d
n×(n2−1)

7: return −ρ
8: end function

Algorithm 3 Inner Maximization
Input: Student model: S(·), Teacher model: T (·), Original
input: x, True label: y, Perturbation size: ϵ, Step size :ξ,
Number of iterations: iter
Output: Adversarial example: xadv

1: xadv ← x+ random noise in [−ϵ, ϵ]
2: for i = 1 to iter do
3: losskl ← KL(S(xadv), T (xadv))
4: lossmse ← MSE(get cam(S, xadv), get cam(T, xadv))
5: loss← losskl + lossmse

6: xadv ← xadv + ξ · sign(∇xadv
loss)

7: xadv ← clip(xadv, x− ϵ, x+ ϵ) ▷ Ensure xadv is
within the ϵ-neighborhood of x

8: end for
9: return xadv

Algorithm 4 Outer Minimization
Input: Training dataset: D, student model with θ: S(·),
teacher model: T (·), epochs E, learning rate: η, hyperpa-
rameter: α, constant: c
Output: Trained student model S(·)

1: for e = 1 to E do
2: for each batch (x, y) in D do
3: x′ ← Inne Maximization
4: if weights are not used then ▷ SmaraAD
5: Lsm&align(S, T, x, x

′, c, α) ← Calculated
by Eq.9

6: else ▷ SmaraAD++
7: Louter(S, T, x, x

′, y, c, α)← Calculated by
Eq.10

8: end if
9: θ ← θ − η · ∇θL

10: end for
11: end for
12: return S(·)
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