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1. More details on Mask-Preserved Attribute
Editing Pipeline

1.1. Text Manipulation details

In Table 1, we introduce exhaustive prompts used to instruct
GPT-3.5 Turbo [1], and edited sentence examples with dif-
ferent attribute variations. We find that adding pre-defined
roles (the professional linguistic assistant) and examples in
text prompts can drastically improve performances.

1.2. Mask-Guided Diffusion details

We leverage the state-of-the-art text-to-image algorithm La-
tent Diffusion Model [16], a.k.a Stable Diffusion (SD), in
which the diffusion process performs in low-dimensional
latent space where semantic information can better trans-
fer. It consists of a variational autoencoder network to
encode and decode between latent space and pixel space,
and denoising network U-Net [17] architecture conditioned
on the guiding text prompt to achieve diffusion process.
And we integrate our Mask-Guided Attention and Con-
trolNet [25] to the text-guided Image-to-Image Translation
approach PnP [19]. In all our results, the Mask-Guided
Attention and ControlNet block [25] is integrated into all
decoder layers of Stable Diffusion. For integration dura-
tion in the denoising process, we utilize two thresholds (i)
τm ∈ [0, 1] is the sample step until Mask-Guided Attention
is integrated, (ii) τc ∈ [0, 1] is the sample step until which
ControlNet block [25] is integrated. We set τm = 0 since
we need to ensure the irrelevant region is not affected in ev-
ery step of the denoising process. We set τc = 0.5 since
a large value will diminish the spatial constraint effects of
semantic layout labels, and a small value will reduce the re-
ality of edited images. More discussion on τc is presented
in Sec 5.2. The detailed parameter values in our pipeline are
presented in Table 2.

It is noteworthy that the Mask-Guided Attention serves
in local attribute editing and does not serve in global at-
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tribute editing. This is because in local editing we need
to identify the area of edition by the object mask, while in
global editing the whole image needs to be changed.

2. More Evaluation Results

2.1. Per-Class analysis

Figure 2 shows the per-class mIoU drop of two segmen-
tation models OCRNet [23] and SEEM [27]. It can be ob-
served that creature classes like dog, cat, and horse are more
easily disturbed than inanimate object classes such as bus
and train.

2.2. Robustness comparison

To exclude the impact of the performance improvement in
original data on our benchmark, we evaluate model robust-
ness by calculating the segmentation accuracy decline in
Section 4. In this part, we additionally plot the mIoU accu-
racy on original Pascal VOC [8] vs. our Pascal-EA bench-
mark. As shown in Figure 1, the CATSeg [4] exhibits the
greatest robustness than others.

2.3. More qualitative results

Figures 9, 10 and 11 illustrate qualitative results of segmen-
tation methods under different attribute variations.

3. Analysis of Pascal-EA

In contrast to previous benchmarks like COCO-O [15] and
ImageNet-C [9] providing samples from out-of-distribution
domains, our Pascal-EA consists of image variations in ed-
itable attributes within the in-distribution domain. We mea-
sure the extent to which the distribution of our Pascal-EA
shifts from that of the original Pascal VOC dataset [8] by the
widely-used out-of-distribution detection approach Grad-
Norm [12]. Experimental results in twelve different at-
tribute variations are shown in Figure 3, the x-axis is gra-
dient norms scores and the y-axis is the density of each
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Table 1. Illustrations of text prompts used to instruct GPT-3.5 Turbo [1] and edited sentence examples. Edited parts are colored red.

Variation type Text Prompt Examples

Local color You are a professional linguistic assistant. I will provide you with a sentence. You
should first identify the subject of the sentence, and then generate a variation by alter-
ing or adding the color attributes of the subject. You should only return the sentence
variation. For example, change ”a photo of an airplane on the ground” to ”a photo
of a blue airplane on the ground”

Input: a photo of a white and red train.
Output: a photo of a blue and yellow train.

Local material You are a professional linguistic assistant. I will provide you with a sentence. You
should first identify the subject of the sentence, and then generate a variation by
changing the material attribute of the subject. The material should be selected from
”wooden”, ”paper”, ”metallic” and ”paper”. You should only return the sentence
variation. For example, change ”a photo of an airplane on the ground” to ”a photo
of a wooden airplane on the ground”

Input: a photo of a white and red train.
Output: a photo of a wooden white and red
train.

Local pattern You are a professional linguistic assistant. I will provide you with a sentence. You
should first identify the subject of the sentence, and then generate a variation by
changing the material attribute of the subject. The type of patterns should be se-
lected from ”dotted”, ”striped” and ”lettered”. You should only return the sentence
variation. For example, change ”a photo of an airplane on the ground” to ”a photo
of an airplane with stripes on the surface on the ground”.

Input: a photo of a white and red train.
Output: a photo of a striped white and red
train.

Global domain: You are a professional linguistic assistant. You should generate one possible edition by
changing the provided sentence’s data domain without changing the content. The data
domain should be selected from ”oil pastel”, ”painting”, ”and sketch” For example,
change ”a photo of an airplane on the ground” to ”a painting of an airplane on the
ground”

Input: a photo of a white and red train.
Output: a sketch of a white and red train.

Global weather: You are a professional linguistic assistant. You should generate one possible edition
by only adding a weather description to the provided sentence without changing the
content. The weather should be selected from ”snow”, ”rain”, and ”fog”. For exam-
ple: change ”a photo of an airplane on the ground” to ”a photo of an airplane on the
ground on a snowy day”.

Input: a photo of a white and red train.
Output: a photo of a red and white train
against a backdrop of falling snow

Table 2. Parameter settings of Mask-Guided Diffusion.

Parameters Values

Image resolution 512×512
SD version 1.5

Seed 1
Guidance scale 7.5

Inversion timesteps 1000
Diffusion timesteps 50

τf [19] 0.8
τA [19] 0.5
τc (ours) 0.5
τm (ours) 0.0

score, and we calculate the overlap area of two distribu-
tions in which heavier overlap indicates closer to original
distribution. We observe that our Pascal-EA can proximity
the original distribution meanwhile having object attribute
variations, which implies can provide reliable evaluations.

To explore whether the diffusion process will degrade the
reliability of our evaluations for segmentation, we create a
reference set in which we reconstruct the original validation
set using our pipeline with non-edited texts. This operation
first adds noises to the original images and then denoise
them with non-edited texts. We compare model perfor-
mances on the original validation set and our reference set
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Figure 1. The average performances on our Pascal-EA vs. Perfor-
mances on original Pascal VOC [8]. The black dashed line indi-
cates the linear fit of all segmentation methods.

in Table 5. It is obvious that the diffusion process induces
subtle disturbing on segmentation performances which is
negligible compared to attribute variation themselves. Such
results also serve as evidence that our pipeline’s robustness
to potential errors in generated caption. In our all experi-
ments in Sec 4, we replace results in the validation set with
those in our reconstructed set to remove the effects of per-
turbations.



OCRNet SEEM

mIoU drop (↓) mIoU drop (↓)

Figure 2. Average mIoU drop (↑) in each class of OCRNet [23] and SEEM [27] under our Pascal-EA.
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Figure 3. Different distribution of our edited images and original Pascal VOC [8] in terms of the quantities in GradNorm.

Additional qualitative results of the Pascal-EA bench-
mark are illustrated in Figure 7 and Figure 8. The red
lines delineate the boundaries of objects in ground truths,
our mask-preserved pipeline can ensure the correctness of
original labels in attribute-edited images.

4. Additional applications of our pipeline
Improving the generalization ability of segmentation
methods. We show that our mask-preserved attribute edit-
ing pipeline can be exploited to generate training images

for improving the robustness ability of segmentation mod-
els. We construct edited training sets with four adverse con-
ditions (fog, snow, rain, and night) using the Cityscapes
dataset [5], and use them to train models. Following
the previous setting of [13], we report performances from
Cityscapes to ACDC domain generalization, the results of
comparative approaches are directly from [13]. The quanti-
tative results in Table 3 and 4 exhibit that model training
with our data has competitive performances, and consis-
tently gains improvement across all datasets and scenarios.



HRNet [20] Segformer [21]
Method CS Rain Fog Snow Night Avg. CS Rain Fog Snow Night Avg.

Baseline 70.47 44.15 58.68 44.20 18.90 41.48 67.90 50.22 60.52 48.86 28.56 47.04

CutOut [7] 71.39 40.29 57.70 43.98 16.55 39.63 68.93 47.68 60.34 46.98 26.49 45.37
CutMix [24] 72.68 42.48 58.63 44.50 17.07 40.67 69.23 49.53 61.58 47.42 27.77 46.57
Weather [9] 69.25 50.78 60.82 38.34 22.82 43.19 67.41 54.02 64.74 49.57 28.50 49.21
StyleMix [11] 57.40 40.59 49.11 39.14 19.34 37.04 65.30 53.54 63.86 49.98 28.93 49.08
Ours 65.77 46.40 61.61 49.78 28.49 46.57 63.48 52.25 69.54 56.20 30.12 52.03

Oracle - 65.67 75.22 72.34 50.39 65.90 - 63.67 74.10 67.97 48.79 63.56

Table 3. Comparison of different methods from Cityscapes (source) to ACDC (target) using the mIoU (↑) metric. The results are reported
on the Cityscapes (CS) validation set, four individual scenarios of ACDC, and the average (Avg). The best performances are bold. Oracle
indicates the supervised training on ACDC, serving as an upper bound for the other methods.

Vanilla CutOut [7] CutMix [24]
Digital

Corruption [9] AugMix [10] Our

90.81 91.44 92.01 91.19 91.88 92.57

Table 4. The results of different data augmentation techniques us-
ing Mask2Former [3] on Pascal VOC dataset [8].

Table 5. The mIoU (↑) of different methods on Pascal VOC [8]
and our Pascal-EA. The performance of all methods drops on our
Pascal-EA.

Method Pascal VOC Pascal-EA

DeepLabV3+ [2] 75.33 73.65 (-1.68)
OCRNet [23] 76.92 75.32 (-1.60)
Segmenter [18] 82.25 80.66 (-1.59)
Segformer [21] 81.01 79.45 (-1.56)
Mask2Former [3] 91.98 90.81 (-1.17)

CATSeg [4] 96.60 95.59 (-1.1)
OVSeg [14] 94.49 92.83 (-1.66)
ODISE [22] 93.22 91.54 (-1.68)
X-Decoder [26] 91.77 90.42 (-1.35)
SEEM [27] 91.06 89.21 (-1.85)

In Table 3, since CutOut [7] and CutMix [24] just com-
bine local visual contents, it exhibits improvement in in-
distribution performance while deterioration on global style
shifts. On account of unreal images, Hendrycks-Weather
[9] degrade performance in snow, and StyleMix [11] has
declined in all scenarios.

5. More discussion
5.1. Text quality evaluation

As generating variations of text descriptions of images by
LLM [1], our framework inevitably imports text perturba-
tions. To extensively evaluate the quality of target texts in
comparison to the source, we adopt several metrics: (1) Per-
plexity to measure sentence quality, (2) CIDEr and SPICE
to measure the fidelity and semantic meanings respectively,
(3) BERT score [6] which calculate cosine similarity be-
tween texts and category labels of images to measure the

Table 6. The quantitative assessments of text variations to original
ones in Pascal VOC dataset [8].

Perplexity (↓) CIDEr (↑) SPICE (↑)
BERT-

Score (↑)

Source 103.71 10.00 1.00 0.71

Text variations

Color 107.70 7.34 0.85 0.71
Material 118.14 3.58 0.56 0.65
Pattern 124.26 6.10 0.71 0.62
Style 129.54 7.35 0.67 0.69

consistency with class ground truth. The results are shown
in Table.6. The results indicate a reduction in both the
quality and semantic consistency of generated texts, but the
decrement is in a reasonable range. Thus, we infer that
while the LLM introduces additional noise to texts, it is still
adequate as a text editor in our framework.

5.2. Impact of threshold τc

The threshold τc ∈ [0, 1] defines the duration of Control-
Net [25] injection during the denoising process, the smaller
value indicates a longer adoption duration. We perform ad-
ditional experiments to explore its effects on edited image
quality. We translate images with complex city scenes in
the Cityscapes dataset [5] to that on adverse weather (snow,
rain, fog, night). Figure 4 illustrates several qualitative re-
sults. We observe that, as ControlNet [25] injection dura-
tion decreases, the structural consistency decreases while
the realism of edited images increases. To make a trade-off
between realism and structural consistency, we further com-
pute their FID score as shown in Figure 5. We can notice
that as τc = 0.5 we achieve the best performances on all
weather editing scenarios. Therefore, we adopt τc = 0.5 in
our pipeline.

5.3. Failure cases of edited images

Inheriting the innate limitations of diffusion models, our
pipeline has unpleasant performances in several scenarios.
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Figure 4. Resulting images edited by our method using different values of τc
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Figure 5. FID score (↓) of our generation results using different
values of τc. When τc = 0.5, our method achieves the best per-
formances in all weather conditions.

The qualitative failure cases of edited images are shown in
Figure 6. As multiple objects overlap, our edited images
violate the original structures of inside objects. Moreover,
since the inherent failure modes in diffusion model [16], our
edited images could deviate from the original face of crea-
tures.

Original image Edited image

Figure 6. Illustration of our failure cases. Our method does not
faithfully preserve the appearance of the face due to the limitations
of the diffusion model; however, our method effectively preserves
the global structure, which ensures the ground-truth mask of the
edited image is consistent with that of the original one.



Original Pink Colorful Wood Metal Stripe Dot Snow Painting

Figure 7. Resulting images edited by our method. Our method effectively converts various objects into versions with different attributes,
while ensuring their segmentation mask is consistent with the original ones.
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Figure 8. Resulting images edited by our method. Our method effectively converts various objects into versions with different attributes,
while ensuring their segmentation mask is consistent with the original ones.
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Figure 9. Qualitative segmentation results of OCRNet [23] under object color attribute variations.



O
ri
gi
na
l

w
oo
d

sto
ne

m
et
al

O
ri
gi
na
l

w
oo
d

sto
ne

m
et
al

Figure 10. Qualitative results of OCRNet [23] under object material attribute variations.
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Figure 11. Qualitative segmentation results of OCRNet [23] under image style attribute variations.
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