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Supplementary Material

In this appendix, we provide detailed descriptions of
the methodologies and experimental procedures used in our
study, which encompasses:

* Theoretical proofs in detail.
* Additional experimental settings and results.
 Limitations and future directions.

The aim is to ensure the transparency and reproducibility
of our research, while providing sufficient information for
readers interested in the technical intricacies of our work.

8. Proofs of Lemma. 2 and Thm. 1

According to Lemma. 1, we can denote the Fisher-Rao
norm of W w.r.t L. as:
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Then the standard Rademacher complexity w.r.t the CE loss
RN, (Lee 0 F5,.) can be denoted as:
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Specifically, for N} misclassified samples, the upper
bound for R yar (Lee 0 Fj,, ) can be further derived as:
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Notice that it is very likely that 0 < ‘]Eg Zl 1 1’

M
we then assume ‘EE Ef\’ T Z’ ~ y/NM. Due to the fact

that we are deriving the upper bound, (i) holds. Meanwhile,
for NC correctly classified samples, the following inequal-
ities holds:
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Meanwhile, due to variations in network architecture, train-
ing data, and training algorithm, etc, the value of 4., tends

Similar to Eq. 19, we assume ’Eg ZZ 16
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to vary a lot, therefore, we need to make [E, ZZ 7 & pos-
itive to reach the lower bound, which can be denoted as
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9. Additional Experimental Settings and Re-
sults

Experimental Settings. The qualitative Results illustrated
in Fig. 2 and 3 are derived from training models on a dataset
comprising 4000 samples from MNIST. For the evaluations
presented in Fig. 4, we utilized 4,000 training instances
from MNIST and 10,000 from the CIFAR10. Furthermore,
for all setups in LOAT-boosted training, we consistently set
the parameters 7 to 1 and  to 0.05, following the specifica-
tions of Alg. 1.

Additional Results. In addition to the LOAT-boosted
S20 results on ResNetl8, as detailed in Tab. 5, we ex-
tended our experiments to WideResNet-34-10. The com-

Table 6. Evaluation of LOAT-boosted S20 on WideResNet-34-10
(%).

Defense Clean;. PGD? PGD?° PGD*°

PGD-AT 85.57 5320 47.84 46.78
PGD-AT+SLORE 86.97  53.51 4820 47.23
PGD-AT+LORE 86.69  53.90 48.77 47.82

Table 7. Comparison of SLORE-boosted PGD-AT with ALP-
boosted one on ResNet-18 (%).

Defense Clean;. FGSM PGD’ PGD2°

PGD-AT (ALP) 81.26
PGD-AT (SLORE) 83.41

60.92 51.38 45.90
61.80 51.46 46.50

prehensive outcomes of these additional experiments are
presented in Tab. 6.  Our findings indicate that SLORE-
enhanced PGD-AT can enhance the test clean accuracy
of WideResNet-34-10 by 1.40%. Furthermore, LORE-
enhanced PGD-AT contributes to an increase in the model’s
robustness against PGD” attacks by 0.70%, PGD?* attacks
by 0.93%, and PGD*? attacks by 1.04%.

Furthermore, we compare our algorithm with widely
used Adversarial Logit Pairing (ALP). Detailed results are
shown in Tab. 7.

Additionally, we conducted evaluations of the LOAT-
boosted DM-AT on augmented datasets from Cifar100,

Table 8. Classification Accuracy of models trained by 1x10°
EDM-generated images-augmented SVHN (%).

Models | Defense | Clean, . | Clean;. |PGD?° |PGD*?| AA

TRADES 96.59 | 9657 | 56.74 | 53.84 |36.21

TRADES+SLORE | 9622 | 96.14 | 61.20 | 57.85 |38.58

PreResNet18| TRADES+LORE | 97.79 | 97.39 | 55.65 | 4733 | 9.64
Swish

(Swish) TRADES(S) 96.06 | 96.20 | 69.91 | 66.64 |41.38

TRADES(S)+SLORE | 97.12 | 97.01 | 77.73 | 7338 |13.48

TRADES(S)+LORE | 96.46 | 96.44 | 6525 | 61.82 |37.65

TRADES 97.45 | 97.69 | 59.57 | 5475 |15.17

TRADES+SLORE | 95.46 | 95.67 | 6835 | 67.01 |49.25

WRN-28-10 | TRADES+LORE | 97.61 | 97.66 | 43.44 | 37.51 |10.79
Swish

(Swish) TRADES(S) 97.43 | 97.75 | 74.98 | 69.10 |15.77

TRADES(S)+SLORE | 97.11 | 97.31 | 70.17 | 65.19 |11.27

TRADES(S)+LORE | 97.22 | 97.36 | 57.71 | 50.58 |16.36

MART 97.23 | 97.23 | 5234 | 49.89 [22.89

MART+SLORE | 88.13 | 93.97 | 64.22 | 63.82 |53.26

MART+LORE | 9470 | 96.30 | 72.16 | 70.76 | 9.03

Table 9. Classification Accuracy of models trained by 1x10°
EDM-generated images-augmented Cifar100 (%).

Models ‘ Defense ‘Cleantr ‘ Cleany, ‘PGD20 ‘PGD40 ‘ AA

TRADES 8527 | 6233 | 34.62 | 34.59 |29.66
TRADES+SLORE | 84.95 | 61.63 | 34.41 | 34.47 |29.40

PreResNet18| TRADES+LORE 86.35 | 62.79 | 34.63 | 34.55 |29.21

Swish
(Swish) TRADES(S) 81.84 | 60.15 | 33.82 | 33.76 |28.76
TRADES(S)+SLORE | 81.85 | 60.22 | 33.66 | 33.73 |28.88
TRADES(S)+LORE | 81.81 | 59.86 | 34.02 | 34.00 |28.70
MART 77.78 | 5991 | 34.86 | 34.83 |29.18
MART+SLORE | 77.08 | 59.86 | 34.72 | 34.70 |29.60
MART+LORE | 7857 | 60.18 | 35.20 | 35.22 [29.47
TRADES 89.39 | 65.41 | 37.88 | 37.93 |33.02
TRADES+SLORE | 88.95 | 64.95 | 38.07 | 38.04 |33.29
WRN-28-10 | TRADES+LORE | 90.17 | 66.62 | 38.10 | 37.96 |32.61
(Swish)

TRADES(S) 8522 | 63.12 | 36.62 | 36.57 |31.60
TRADES(S)+SLORE | 84.78 | 63.18 | 36.50 | 36.54 |31.97
TRADES(S)+LORE | 84.82 | 6291 | 36.78 | 36.65 |31.56

MART 81.82 | 65.05 | 38.56 | 38.51 |33.91
MART+SLORE 80.35 | 64.46 | 38.88 | 38.81 |34.26
MART+LORE 83.21 | 65.11 | 39.06 | 39.00 |33.76

Table 10. Classification Accuracy of PreResNet18 (Swish) trained
by 1x10° EDM-generated images-augmented Tiny-ImageNet
(%). V, S, and L represent vanilla, SLORE-boosted, and LORE-
boosted adversarial training algorithms respectively. Cir, Cee,
P40, Ace, and A, indicate Cleany,., Clean;., PGD*®, APGD.., and
APGD; individually.

TRADES MART
CtT Cte P40 Ace AT Ct'r Cte P4O Ace AT
V|[64.91|58.66|28.52(28.31|21.96|52.52(50.62(28.14{28.02[21.51
|S]64.76|58.32(28.33(28.32/21.59|55.17|51.34{29.02(28.75(22.54
IL|65.23|59.08(28.78(28.47|21.68|53.04/50.79|28.61|27.74[21.26

Tiny-ImageNet and SVHN. The extensive results in Tab. 8,
9 and 10 reinforce the adaptability and efficacy of our ap-
proach.  To more comprehensively demonstrate the effi-
cacy of our approach, we trained LOAT-boosted TRADES



Table 11. Classification Accuracy of PreResNet18 (Swish) trained
by 1x10° EDM-generated images-augmented Cifar10 after 400
epochs (%).

Defense Clean;. PGD'° PGD?° PGD*° AA

TRADES 8845 62.62 61.88 61.76 58.21
TRADES+SLORE 86.12 6228 61.73 61.56 57.76
TRADES+LORE 90.26  62.81 62.01 61.85 56.51

MART 8835 61.19 60.18 5993 53.92
MART+SLORE ~ 88.15  61.99 6094 60.78 54.74
MART+LORE 89.08 6381 62.83 62.57 5528

and MART on PreResNet18 (Swish) for an extended dura-
tion of 400 epochs. The evaluations, as presented in Tab. 11,
reveal a more pronounced improvement in performance
compared to training for approximately 100 epochs. This
enhancement is particularly notable in the case of MART.

10. Limitations and Future Works

* Mitigating Theoretical Gap Between MLPs and Other
Network Structures. We intend to implement knowl-
edge distillation using a ReLU-activated MLP, aligning its
architecture to mirror the layer count of a ResNet resid-
ual block or a Transformer stack, and matching the hid-
den units in each layer to the dimensionality of latent fea-
tures derived from these structures. This framework will
be employed in LOAT-boosted AT algorithms, which can
help us investigate the theoretical gap.

* Hyperparameters in LOAT. The selection of hyperpa-
rameters &1, &2, T, and 7y is crucial, as their configuration
can significantly impact the final results.

* Future Directions. The rising prominence of Transform-
ers and Large Language Models (LLMs) presents new
challenges and opportunities. Exploring the application
of adversarial training frameworks to these models is both
an intriguing and vital avenue for future research.



