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Supplementary Material

In this appendix, we provide detailed descriptions of
the methodologies and experimental procedures used in our
study, which encompasses:
• Theoretical proofs in detail.
• Additional experimental settings and results.
• Limitations and future directions.

The aim is to ensure the transparency and reproducibility
of our research, while providing sufficient information for
readers interested in the technical intricacies of our work.

8. Proofs of Lemma. 2 and Thm. 1
According to Lemma. 1, we can denote the Fisher-Rao
norm ofW w.r.t Lce as:
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Then the standard Rademacher complexity w.r.t the CE loss
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) can be denoted as:
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Specifically, for NM
tr misclassified samples, the upper
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) can be further derived as:
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Notice that it is very likely that 0 <
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Similar to Eq. 19, we assume
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Meanwhile, due to variations in network architecture, train-
ing data, and training algorithm, etc, the value of γ̂ce tends
to vary a lot, therefore, we need to make Eξ
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9. Additional Experimental Settings and Re-
sults

Experimental Settings. The qualitative Results illustrated
in Fig. 2 and 3 are derived from training models on a dataset
comprising 4000 samples from MNIST. For the evaluations
presented in Fig. 4, we utilized 4,000 training instances
from MNIST and 10,000 from the CIFAR10. Furthermore,
for all setups in LOAT-boosted training, we consistently set
the parameters τ to 1 and γ to 0.05, following the specifica-
tions of Alg. 1.

Additional Results. In addition to the LOAT-boosted
S2O results on ResNet18, as detailed in Tab. 5, we ex-
tended our experiments to WideResNet-34-10. The com-

Table 6. Evaluation of LOAT-boosted S2O on WideResNet-34-10
(%).

Defense Cleante PGD7 PGD20 PGD40

PGD-AT 85.57 53.20 47.84 46.78
PGD-AT+SLORE 86.97 53.51 48.20 47.23
PGD-AT+LORE 86.69 53.90 48.77 47.82

Table 7. Comparison of SLORE-boosted PGD-AT with ALP-
boosted one on ResNet-18 (%).

Defense Cleante FGSM PGD7 PGD20

PGD-AT (ALP) 81.26 60.92 51.38 45.90
PGD-AT (SLORE) 83.41 61.80 51.46 46.50

prehensive outcomes of these additional experiments are
presented in Tab. 6. Our findings indicate that SLORE-
enhanced PGD-AT can enhance the test clean accuracy
of WideResNet-34-10 by 1.40%. Furthermore, LORE-
enhanced PGD-AT contributes to an increase in the model’s
robustness against PGD7 attacks by 0.70%, PGD20 attacks
by 0.93%, and PGD40 attacks by 1.04%.

Furthermore, we compare our algorithm with widely
used Adversarial Logit Pairing (ALP). Detailed results are
shown in Tab. 7.

Additionally, we conducted evaluations of the LOAT-
boosted DM-AT on augmented datasets from Cifar100,

Table 8. Classification Accuracy of models trained by 1×106
EDM-generated images-augmented SVHN (%).

Models Defense Cleantr Cleante PGD20 PGD40 AA

PreResNet18
(Swish)

TRADES 96.59 96.57 56.74 53.84 36.21
TRADES+SLORE 96.22 96.14 61.20 57.85 38.58
TRADES+LORE 97.79 97.39 55.65 47.33 9.64

TRADES(S) 96.06 96.20 69.91 66.64 41.38
TRADES(S)+SLORE 97.12 97.01 77.73 73.38 13.48
TRADES(S)+LORE 96.46 96.44 65.25 61.82 37.65

WRN-28-10
(Swish)

TRADES 97.45 97.69 59.57 54.75 15.17
TRADES+SLORE 95.46 95.67 68.35 67.01 49.25
TRADES+LORE 97.61 97.66 43.44 37.51 10.79

TRADES(S) 97.43 97.75 74.98 69.10 15.77
TRADES(S)+SLORE 97.11 97.31 70.17 65.19 11.27
TRADES(S)+LORE 97.22 97.36 57.71 50.58 16.36

MART 97.23 97.23 52.34 49.89 22.89
MART+SLORE 88.13 93.97 64.22 63.82 53.26
MART+LORE 94.70 96.30 72.16 70.76 9.03

Table 9. Classification Accuracy of models trained by 1×106
EDM-generated images-augmented Cifar100 (%).

Models Defense Cleantr Cleante PGD20 PGD40 AA

PreResNet18
(Swish)

TRADES 85.27 62.33 34.62 34.59 29.66
TRADES+SLORE 84.95 61.63 34.41 34.47 29.40
TRADES+LORE 86.35 62.79 34.63 34.55 29.21

TRADES(S) 81.84 60.15 33.82 33.76 28.76
TRADES(S)+SLORE 81.85 60.22 33.66 33.73 28.88
TRADES(S)+LORE 81.81 59.86 34.02 34.00 28.70

MART 77.78 59.91 34.86 34.83 29.18
MART+SLORE 77.08 59.86 34.72 34.70 29.60
MART+LORE 78.57 60.18 35.20 35.22 29.47

WRN-28-10
(Swish)

TRADES 89.39 65.41 37.88 37.93 33.02
TRADES+SLORE 88.95 64.95 38.07 38.04 33.29
TRADES+LORE 90.17 66.62 38.10 37.96 32.61

TRADES(S) 85.22 63.12 36.62 36.57 31.60
TRADES(S)+SLORE 84.78 63.18 36.50 36.54 31.97
TRADES(S)+LORE 84.82 62.91 36.78 36.65 31.56

MART 81.82 65.05 38.56 38.51 33.91
MART+SLORE 80.35 64.46 38.88 38.81 34.26
MART+LORE 83.21 65.11 39.06 39.00 33.76

Table 10. Classification Accuracy of PreResNet18 (Swish) trained
by 1×106 EDM-generated images-augmented Tiny-ImageNet
(%). V, S, and L represent vanilla, SLORE-boosted, and LORE-
boosted adversarial training algorithms respectively. Ctr , Cte,
P40, Ace, and At indicate Cleantr , Cleante, PGD40, APGDce, and
APGDt individually.

TRADES MART
Ctr Cte P40 Ace AT Ctr Cte P40 Ace AT

V 64.91 58.66 28.52 28.31 21.96 52.52 50.62 28.14 28.02 21.51
S 64.76 58.32 28.33 28.32 21.59 55.17 51.34 29.02 28.75 22.54
L 65.23 59.08 28.78 28.47 21.68 53.04 50.79 28.61 27.74 21.26

Tiny-ImageNet and SVHN. The extensive results in Tab. 8,
9 and 10 reinforce the adaptability and efficacy of our ap-
proach. To more comprehensively demonstrate the effi-
cacy of our approach, we trained LOAT-boosted TRADES



Table 11. Classification Accuracy of PreResNet18 (Swish) trained
by 1×106 EDM-generated images-augmented Cifar10 after 400
epochs (%).

Defense Cleante PGD10 PGD20 PGD40 AA

TRADES 88.45 62.62 61.88 61.76 58.21
TRADES+SLORE 86.12 62.28 61.73 61.56 57.76
TRADES+LORE 90.26 62.81 62.01 61.85 56.51

MART 88.35 61.19 60.18 59.93 53.92
MART+SLORE 88.15 61.99 60.94 60.78 54.74
MART+LORE 89.08 63.81 62.83 62.57 55.28

and MART on PreResNet18 (Swish) for an extended dura-
tion of 400 epochs. The evaluations, as presented in Tab. 11,
reveal a more pronounced improvement in performance
compared to training for approximately 100 epochs. This
enhancement is particularly notable in the case of MART.

10. Limitations and Future Works
• Mitigating Theoretical Gap Between MLPs and Other

Network Structures. We intend to implement knowl-
edge distillation using a ReLU-activated MLP, aligning its
architecture to mirror the layer count of a ResNet resid-
ual block or a Transformer stack, and matching the hid-
den units in each layer to the dimensionality of latent fea-
tures derived from these structures. This framework will
be employed in LOAT-boosted AT algorithms, which can
help us investigate the theoretical gap.

• Hyperparameters in LOAT. The selection of hyperpa-
rameters E1, E2, τ , and γ is crucial, as their configuration
can significantly impact the final results.

• Future Directions. The rising prominence of Transform-
ers and Large Language Models (LLMs) presents new
challenges and opportunities. Exploring the application
of adversarial training frameworks to these models is both
an intriguing and vital avenue for future research.


