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Supplementary Material

A. Implementation Details

Reference Frame Selection. To render a new frame, we
need to select several frames with estimated camera poses
as reference frames. In Sec. 3 of the paper, we define K
to be the number of source views in our model. For the
inference process, we select K nearby optimized frames
I = {Ik}Kk=1 as references for rendering pixels and opti-
mizing the camera pose of the target frame. Empirically, we
find that varying the stride of reference frame selection from
1 to 4 does not have a significant impact on the reconstruc-
tion results. To improve the network’s capability to gen-
eralize across different view densities during the training
process, we adopt the frame selection strategy from IBR-
Net [43]. We create a pool of nK nearby views by randomly
selecting n from a uniform distribution of [1, 3]. Next, we
randomly select K views from the pool to be the reference
views.

Tracking Details. We use SuperPoint [7] to detect inter-
est points in RGB images and SuperGlue [29] to establish
point correspondence between reference images and the tar-
get image, with estimated confidence scores for each point
match. We then select the top Mt pixel pairs between the
reference images and the target image with the highest con-
fidence scores. To ensure a fair comparison with baseline
models, we set Mt to 200 for the Replica Dataset [32],
1,000 for the ScanNet Dataset [6], and 2,000 for the TUM-
RGBD Dataset [33]. In practice, a simpler approach would
be to set a threshold for the confidence level of the matched
point pairs.

Dense Mesh Reconstruction. Our model utilizes a neu-
ral implicit representation of the scene, and to reconstruct
the 3D mesh, we store the xyz points from the rendered
xyz-maps. We set the default pixel stride for rendering to
5 and the default temporal frame stride to 10 (render every
other 10 frames while tracking the pose of every frame).
Tab. 6 compares the performance with various rendering
pixel stride and temporal stride values. Once we have vis-
ited all the sequence frames and rendered novel views, we
merge all stored xyz points into a point cloud, remove out-
liers, and prune points that are too close. We can then cal-
culate the rendered mesh structure from the rendered maps
using Poisson surface reconstruction [15]. For scenes in
NICE-SLAM Dataset, to generate mesh structure, we sam-
ple 8,160 pixels in every frame and render 200 frames per
scene. The rendered xyz-map and RGB-map are saved as
points’ positions and colors. We adopt Poisson surface re-
construction [15] to generate 3D mesh from point clouds.

Point stride Acc. # Comp. # Comp. Ratio "

5 1.83 2.02 93.79
10 1.90 2.09 93.49
15 2.24 2.31 93.03
20 2.31 2.49 92.36

Temporal stride Acc. # Comp. # Comp. Ratio "

5 1.80 1.99 93.81
10 1.83 2.02 93.79
20 2.27 2.44 93.03

Table 6. 3D reconstruction results with different points render-

ing strides and temporal skip strides on Replica Dataset [32].

Iterations iMAP NICE-SLAM Ours

10 3.42 2.05 0.83
15 2.72 1.69 0.62
20 2.23 1.21 0.59

Table 7. Average tracking results with different optimization

iterations. ATE RMSE [cm] is used as the evaluation metric.

We use open3d.geometry.TriangleMesh package
in the implementation. Specifically, we determine the depth
of the octree subdivision to be 8, and we assign the average
distance of all points to be the size of the spherical neigh-
borhoods used by the Poisson reconstruction algorithm.

B. Additional Results

More Quantitative Results on the Replica Dataset [32].

In Tab. 8, we present comprehensive reconstruction results
for each scene in the Replica Dataset [32], with quantitative
values for iMAP and NICE-SLAM obtained from [53]. Our
method demonstrates comparable performance with other
per-scene optimization methods while outperforming them
in terms of 2D metrics. In particular, our model generalizes
to novel scenes unseen during training and reconstructs ac-
curate geometric details, without any further finetuning of
the NeRF model.

xyz-maps versus Other Variants for Fusion. Fig. 6
shows reconstruction results on the Replica Dataset [32]
using different fusion method. As described in Sec. 3.2
in the main paper, the most straightforward fusion method
is to directly apply IBRNet and reconstruct the surface by
integration over the density field. We denote this method
as “RGB based fusion”. Further introducing a depth fu-
sion branch appears to be a more reasonable alternative, de-
noted as “Depth based fusion”. As can be seen, both the



Metrics room-0 room-1 room-2 office-0 office-1 office-2 office-3 office-4 Avg.

iMAP [35]

Depth L1# 3.41 3.04 4.04 3.77 4.30 7.63 4.93 4.38 4.39
Acc. # 4.13 3.95 4.11 5.02 7.24 5.36 4.12 4.26 4.77
Comp. # 4.84 4.85 4.74 4.03 4.72 6.06 5.14 5.78 5.02
Comp. Ratio " 78.20 77.41 81.64 79.64 76.80 65.16 75.90 69.31 75.51

DI-Fusion [13]

Depth L1 # 7.94 69.21 28.47 7.77 7.67 12.28 9.91 10.44 19.21
Acc. # 2.48 39.36 21.82 58.02 2.76 2.33 2.71 2.27 19.40
Comp. # 4.42 31.97 14.55 4.11 2.49 5.50 4.41 6.02 9.19
Comp. Ratio " 90.08 41.98 56.75 89.79 89.60 86.14 85.70 84.43 78.06

NICE-SLAM [53]

Depth L1 # 1.88 1.67 2.23 1.75 2.02 4.82 3.50 2.01 2.49
Acc. # 2.33 2.26 2.27 2.01 2.16 3.10 2.88 2.36 2.42
Comp. # 2.57 2.24 2.64 1.86 2.13 3.12 3.31 3.34 2.65
Comp. Ratio " 91.53 92.80 89.94 94.17 94.07 86.92 84.93 87.05 90.30

Ours

Depth L1 # 0.82 1.45 1.65 1.61 0.99 1.78 2.57 1.37 1.53

Acc. # 1.51 1.67 1.82 1.84 1.66 1.99 2.47 1.69 1.83

Comp. # 1.30 1.81 2.23 1.97 1.73 2.49 2.88 1.75 2.02

Comp. Ratio " 96.08 95.96 93.14 93.29 94.14 92.11 91.57 94.08 93.79

Table 8. Reconstruction results on different scenes in Replica Datasets.

Depth based fusionRGB based fusion xyz-map based fusion Ground truth

Figure 6. Reconstruction results with different fusion methods. Our xyz-map based fusion substantially outperforms the other baselines
based on IBRNet.

results by RGB based fusion and depth based fusion are far
from satisfactory. It is unserprising that the RGB based fu-
sion struggles to achieve good performance due to the lack
of geometry clues in the rendering process. For the depth
based fusion, the geometry exhibited inconsistencies and
inaccuracies. We hypothesize that it is due to the fact that
the depth maps are represented in view-dependent camera
coordinates, resulting in the multi-view inconsistency. In
contrast, our xyz-map based fusion leads to superior recon-
struction results, which inherently considers the multi-view
consistency by design. These results further highlight the
strength of our IBD-SLAM framework.

Geometry Completion. As depicted in Fig. 7, our model
possesses the capability to complete holes and missing re-
gions with novel view synthesis. Some regions of the scene
might still not be seen halfway through the sequence opti-
mization. To generate novel views, we slightly perturb the
currently optimized camera poses. Our model can make a
reasonable estimation of these unseen areas and fill in the

missed regions. In Fig. 7, our model successfully fills in the
geometry holes at frames 750, 1,000, and 1,500, which is
a testament to its novel view synthesis capacity. Since our
model renders novel views of a scene, it produces a better
coverage of the scene geometry.

Point Rendering Stride and Temporal Skip Stride. In
Tab. 6, We evaluate the effects of two factors that affect the
reconstruction performance, namely point rendering stride
and the temporal skip stride. A small point rendering stride
allows for more accurate reconstruction, while at the cost of
more time and memory consumption. We simply adopt the
default stride by IBRNet. We also evaluate different tem-
poral skip strides on Replica Dataset [32]. We can see that
skip strides of 5 and 10 lead to similar results, while when
the stride is set to 20, all metrics deteriorate rapidly. We
choose the stride of 10 for the performance and efficiency
trade-off.

Ablation with Different Numbers of Tracking Iterations.

We vary the number of tracking iterations and evaluate the



Figure 7. The geometry completion ability of our model. Our method can faithfully fill in the missing gaps of the scene.

final results by calculating the ATE RMSE [cm]. The fig-
ures in the table represent the average results of the Replica
Dataset scenes. Our method requires fewer iterations to
achieve a reasonably accurate camera pose, as illustrated
in Tab. 7. Therefore, in our experiments, we use 15 steps
for camera pose optimization per tracking frame.

More Reconstruction Results. The reconstruction results
comparison of Co-SLAM, ESLAM, and our method are
shown in Fig. 8 and Fig. 9. The reconstruction results of
ScanNet Dataset [6] scene0000 00 are shown in Fig. 11.
More reconstruction results of Replica Dataset [32] are also
shown in Fig. 10. As can be seen, our method can faithfully
reconstruct the scenes with fine details, despite not requir-
ing per-scene retraining.



Figure 8. Reconstructioin results comparison with Co-SLAM [42] and ESLAM [14]. We present reconstruction results on office4 of
Replica Dataset [32].



Figure 9. Reconstructioin results comparison with Co-SLAM [42] and ESLAM [14]. We present reconstruction results on room0 of
Replica Dataset [32].



Figure 10. More detailed reconstruction results on Replica Dataste [32]. We present reconstruction results on room1 (top three rows)
and office (bottom three rows).



Figure 11. 3D reconstruction results on ScanNet Dataset [6]. We present reconstruction results on scene0000 00.
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