Appendix

In Appendix A, we elaborate on three loss functions for
object detection. In Appendix B, we describe the training
details of experiments and provide additional results of dig-
ital attacks. In Appendix C, we supplement the settings and
test results of three defense methods.

A. Details on Loss Functions

Given a training dataset S = {(z;,1;)}¥Y; with N train-
ing samples for the thermal infrared object detection model
training, we denote each image by z; € G with G repre-
senting the grayscale space with only grayscale channels,
the BBox information and class information of each object
in the corresponding image by [;. Let f be the object de-
tection model (e.g., YOLO v5), and 6 be the parameters.
Denote the model f trained on dataset .S by f(.S, ), which
will return three types of information: classification proba-
bility, BBox coordinates, and confidence. Since Yolo v5 di-
vides each image into many grids (usually 20 x 20, 40 x 40,
80 x 80) for detection, there are three detection boxes in
each grid. Let M be the total number of detection boxes
in each image. Let us assume that the object classification
probability of the jth detection BBox in the ith ground truth
label is I.5(i, 7) and the classification probability obtained
be the model is f.;5(7,,0). Then, the calculation formula
of the classification loss L;s can be represented as follows:
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Similarly, let us assume that the confidence of jth detection
bounding box in the ith ground truth label be I on s (i, 7),
and the confidence obtained by the model be feo,7(3, 7, 0).
Then, the calculation formula of the confidence loss Lo, ¢
can be represented as follows:
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The formula for calculating the bounding box regression
loss Lp is as follows:
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where [ (%, j) and fg (i, j, 0) represent the jth ground truth
bounding box and the corresponding predicted bounding
box in the ith image, respectively. ( is the distance between
the center points of I5(7,j) and f5(3,j,0). 7 is the diago-
nal length of the smallest enclosing rectangle of [ 5 (4, j) and
fB(i,4,0). v is the similarity of the aspect ratio of {5(i, )
and fp(4, j,0), and p is the influence factor of v.

B. Detailed Experiment Settings and Addi-
tional Experiment Results

Datasets and Models. Flir_v2_T is more challenging
because it has more diverse scenes with denser and more
object classes. For YOLO v5, we choose the Adma algo-
rithm as the optimizer. The initial learning rate is set to
le-3, and the learning rate period decline rate is set to le-2.
The batch size is set to 16, and the training epochs is set to
300. Usually, the model will converge in advance and stop
training. YOLO v3 has been applied to autonomous vehi-
cles, so it has great research significance. For the YOLO
v3 model, we keep the same parameter settings as YOLO
v5. The training of the Faster RCNN is divided into two
stages: the freezing stage and the unfreezing stage. Both
stages choose the Adma algorithm as the optimizer, and the
batch size is set to 8. In the freezing phase, the learning rate
is set to le-3 and the training epochs are 50. In the unfreez-
ing phase, the learning rate is set to le-4 and the training
epochs are 150.

Baselines. The BAF for each category in the test dataset is
calculated separately and independently. We only show the
BAFs of the attacked categories — person and car.

B.1. Object-Affecting Attack

For OAA, the other two parameters we focus on are size
scaling ratio and relative location. Unless otherwise speci-
fied, the default parameters take the following combination:
p =192, ¢ = 20%, A = 0.04 and I = MO. A = 0.04 means
the length and width of the trigger to be one-fifth of the ob-
ject BBox. rl = MO means the center point of the trigger
coincides with the center point of the object BBox. We list
the experimental results in Table 5. The well-performing
parameters and results are marked in boldface.

Pixel Value (p). We found that nearly all thermal infrared
images in the datasets have the highest pixel value of 255
and the lowest pixel value of 0. It can be concluded that
the mapping relationship between temperature and pixels
is T € [Tonin, Trmaz) LION p € [0,255], where T,,;, and
Tnao are the lowest temperature and the highest tempera-
ture in the environment, respectively. Therefore, the attack
effect of various pixel values can be explored. When the
pixel value of trigger is close to the median, the backdoor
model has poor detection effect of clean test images.

Size Scaling Ratio (\). We initially set the trigger size to



Method | Parameter BAF (%) ASR (%)
person car

Default —5.60 —3.40 97.87
4\ —0.60 —0.90 97.98
31 —1.80 —1.70 97.52
A 2\ —1.50 —1.80 97.05
o 0.5A\; | —17.50 —8.20 97.85
A 0.25X\; | —36.00 —19.60 98.09
A Mout | —11.30 —5.20 96.99
M4 —6.60 —4.00 96.86
rl M3 —3.20 —2.00 97.39
M2 —2.90 -—1.70 97.46
M1 —6.70 —3.50 98.10
100 —1.10 —0.90 96.55
R 80 —0.90 —0.90 96.65
A h 60 —3.20 —1.80 96.30
A 40 —4.00 —1.80 94.99
20 —5.50 —2.00 95.15
10 —19.90 —6.80 91.46

Table 5. The effect of other parameters on OAA and RAA.

A = A1 = 0.04. Different values of A represent the scal-
ing of initial trigger area. A lager trigger size will lead to
more effective backdoor attacks, which is however a trade-
off to the visual stealthiness. When the size scaling ratio
is 0.25\1, the BAF is low, which has a great impact on the
detection effect of clean test images.

Relative Location (r]). We set the original location of the
trigger to be rl = MO. Taking half of the diagonal of the
trigger as a unit length, M1 means to move the trigger along
the diagonal to the upper left corner by a unit length. The
M2, M3 and M4 represent moving the trigger by 2, 3 and 4
unit lengths respectively. The Mout means to coincide the
lower left vertex of the trigger with the upper left vertex of
the object BBox. Adding a trigger near the middle part of
the line connecting the center point and the upper left vertex
of the object BBox can achieve a better attack effect.

B.2. Range-Affecting Attack

For RAA, we explore another parameter: trigger size. We
set other parameters as p = 192, ¢ = 20%, ar = 150. The
results are listed in Table 5.

Trigger Size (h). With the trigger width fixed at 6, we
conduct experiments using various trigger heights. Shorter
trigger heights result in fewer occupied detection grids by
the trigger, posing challenges in establishing abnormal as-
sociations. Remarkably, a trigger height of 10 exacerbates
the adverse effect of the backdoor model on the detection
performance of clean test images.
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Figure 9. ASR (%) of pixel value transferability and relative loca-
tion transferability.

B.3. Attack Transferability

Considering that the temperature may not be constant in the
real world, we test the pixel value transferability. The set-
ting the pixel values of trigger to 0, 64, 128, 160, 192, 255
respectively, we get six backdoor models. With the same
trigger implanted in the test set, we get six test sets. Finally,
the six backdoor models are used to test the six test sets re-
spectively. Since the location of the trigger cannot be fixed
precisely, we also focus on relative location transferability.
Similar to pixel value transferability, we only change the
relative location, and the rest of parameters are set with de-
fault parameters. The results are shown in the Figure 9. In
practice, we can choose parameters with better transferabil-
ity to achieve better attack effects.

B.4. Comparative Experiment

The triggers and backdoor attacks designed in [4] are used
to attack TIOD, and the parameters such as poisoning ratio
and attack setting are consistent with the default parame-



Attack Purpose — OAA Misclassification RAA Misclassification OAA Disappearance RAA Disappearance
Method | BAF (%) | AsR (%) BAF (%) ASR (%) | BAED) | sor (%) BAF (%) ASR (%)
person car person car person car person ‘ car
BadDet —-1.50 —1.80 29.72 —23.60 —51.00 12.65 —-1.30 —-0.90 45.35 —2.80 —54.50 1.47
Ours —0.10 —0.90 97.09 —0.90 —0.90 97.44 —0.50 —=5.00 98.54 +0.60 —0.60 95.66
Table 6. Comparative experiments with traditional methods applied to our TIOD backdoor attack task.
ters in our paper. We classify BadDet’s methods accord- Clean Image Clean Test Output

ing to the attack purposes and conduct comparative exper-
iments between the BadDet’s method and our method, fo-
cusing on similar attack purposes. When applying the Bad-
Det’s method, the ar in RAA is set to the global range of
the image, which is consistent with the setting of BadDet.
When applying our method, the ar in RAA is set to 150.
For images with complex backgrounds and numerous small
objects, the setting of the global range can significantly im-
pact the accuracy of identifying clean samples. As shown in
Table 6, it can be seen that VLOD backdoor attack methods
are not suitable for the TIOD task. The reasons are twofold:
1) the RGB triggers cannot effectively activate the back-
door in the thermal infrared domain, and 2) the area that the
trigger can affect is limited, as evident in the parameter ar
experiment results presented in Table 2.

B.5. Temperature Modulated Triggering
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Figure 10. Examples of control the temperature in the digital
world. The pixel range of the attack is [0, 63].

For OAA, as shown in Figure 10, we conduct experi-
ments using temperature-controlled backdoor attacks, tak-
ing advantage of the temperature-sensitive characteristics of
TIOD. For RAA, as shown in Figure 11, We control the at-
tack range using triggers’ temperature.
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Figure 11. Examples of temperature control the attack range in the
digital world. The settings of p \ar are listed on the far left. The
affecting range of RAA is marked as the red circle.

C. Additional Experiment Results of Potential
Countermeasures

Here, we provide additional experiment results of three po-
tential countermeasures. In particular, we report our attack
performance against these popular defense methods

Pruning and Fine-Pruning. = We select one backdoor
model randomly as the candidate backdoor model. Con-
cretely, the candidate backdoor model is the backdoor
model chosen randomly from the temperature control ex-
periment, where the attack pixel range is [192, 255] and
the attack purpose is object disappearance. This candidate
backdoor model detects that the BA of person and car is
78.3% and 81.7% respectively, and the ASR is 95.41%. As



Ratio of Pruning Fine-Pruning
Pruned Network Layers Pruned Neurons BA (%) ASR (%) BA (%) ASR (%)
person car person  car
50% 77.30  80.90 95.41 19.30 25.20 9.24
21-24 80% 77.40  80.70 95.49 23.00 33.10 22.11
95% 77.40  79.90 95.49 23.20 30.10 12.37
50% 78.10  81.10 95.57 27.00 38.20 19.27
19-24 80% 74.80  75.30 95.47 2470  36.80 29.42
95% 7440  74.50 95.42 2270  33.90 13.28
50% 26.20 42.70 63.33 23.70  34.80 65.44
17-24 80% 10.00  14.90 0.00 21.30 34.50 19.65
95% 1.50 0.10 0.00 2490 29.40 14.14

Table 7. Evaluation results of Pruning and Fine-Pruning.

shown in Table 7, for Pruning, we prune the back-end net-
work and gradually increase the number of pruned layers.
Then, we change the pruning ratio to adjust the number
of pruned neurons. For Fine-Pruning, we use the clean
dataset to fine-tune the model obtained in Pruning for 20
rounds. In practice, the poisoned dataset and training pa-
rameters are not available, so the implementation of these
two defense methods will be more difficult.

Neural Cleanse. We randomly select two backdoor mod-
els as the objects of the defense test. For OAA, we choose
the backdoor model trained with parameters p = 255,
q = 20%, A = 0.04, and rl = MO. For RAA, we choose
the backdoor model trained with parameters p = 192,
q = 20%, ar = 150, and h = 100. We show the detection
results for the attack purpose to misclassify car as person
in Figure 12. Since the attacked label is car, we list the re-
sults about the car. The recovered triggers for the remaining

Input Output

Recovered Trigger

Figure 12. Evaluation results of NC. The Input is clean images
fed to NC. The red characters are the anomaly indices (value > 2
considered as trigger detected) detected by NC for the attacked
label. The Output is detection results of the backdoor model on
images with recovered triggers injected.

classes are shown in Figure 13. For classes with anomaly

indices, we mark the anomaly indices with red characters
in the image. The results show that the Neural Cleanse
adapted to image classification cannot provide satisfactory
defense against our proposed backdoor attack methods.
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Figure 13. The recovered triggers for remaining classes.



