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Supplementary Material

Figure S1. Visualization of inattentive regions and clustering. The original images are shown in the first row and the visualization
results are shown in the second row. The inattentive regions are represented by colored patches and each color represents one cluster. We
can see none of the landmark regions are classified as inattentive regions and semantically similar inattentive regions are grouped together.

1. Qualitative Studies on Inattentive Regions.
In Section 1 of the main paper, we highlighted the observa-
tion that the non-landmark regions (e.g., cheeks and fore-
heads) are larger and more uniform than the sparse and dis-
tinctive landmark regions. In Section 3.2, we explained that
in order to setup selective correspondence, we first target the
separation of the critical facial and the insignificant regions
using the CLS token output of the MAE, and then run a sim-
ple clustering algorithm on the insignificant regions. To bet-
ter understand this attentive-inattentive separation and how
the clustering works, we visualize a few examples in Figure
S1. The inattentive regions are denoted by colorful patches
and the patches with the same color belong to the same clus-
ter. We observe that semantically similar regions are clus-
tered together and none of the landmark regions are classi-
fied as inattentive regions, hence corroborating our earlier
hypothesis.

2. Effects of Changing Backbone Architecture
In this line of work, we are the first to adopt the Vision-
Transformer [3] as the backbone architecture. In this sec-
tion, we evaluate whether prior works can benefit by simply
changing the backbone to ViT architectures. We switch the
backbone of CL [2] and LEAD [6] and report the quantita-
tive results on landmark matching in Table S2, and on land-
mark detection in Table S3. Note that both CL and LEAD
rely on the extraction of hypercolumns which require fea-
ture map of different spatial resolution. However, the hyper-
columns are not compatible with our backbones as DeiTs
[7] are columnar (patch-based) architectures which can only
output feature maps at the same spatial size. For this reason
and for a fair comparison with our work, we evaluate the

previous methods using the last layer feature from DeiTs.
For landmark matching, the mean pixel error increases dra-
matically after changing the backbone for both the matching
between same and different identities. We observe similar
phenomenon on landmark detection where the performance
drops on all evaluated datasets except for MAFL. Addition-
ally, we find that the performance of CL and LEAD does not
improve with a larger backbone (DeiT-S compared to DeiT-
T). We attribute the performance drop to two main reasons:
(1) the first stage SSL protocols of CL and LEAD, namely
MoCo [5] and BYOL [4], are not designed to accommodate
the requirements of vision-transformer backbone. This also
explains why the performance doesn’t improve after applied
a larger backbone. Although integration of ViT to the MoCo
framework has been addressed in MoCov3 [1], integrating
MoCov3 to CL is beyond the scope of our work. (2) The use
of hypercolumns is essential for CL and LEAD, however
they are not available when using the DeiTs. In conclusion,
naı̈vely switching the backbone architecture does not nec-
essarily yield better results. The performance gain of our
SCE-MAE framework over existing SOTA originates due
to the intrinsic compatibility of the first-stage MAE proto-
col (with ViT backbones) and the ability to leverage the ViT
output during the second stage.

3. Choices of Hyperparameters
3.1. Attentive Rate

We use attentive rate η to decide the portion of attentive and
inattentive tokens. We study the best choice of this hyperpa-
rameter by directly dropping a certain portion of the patch
tokens. The idea is that the inattentive tokens are not critical
for downstream evaluation as they are mainly non-landmark



Table S2. Quantitative evaluations on landmark matching using different backbone architectures. We report the mean pixel error
between the prediction and ground-truth on 1000 image pairs sampled from MAFL. The best and second best results are shown in bold and
underline respectively. We group the results by backbone architecture. The error of previous SOTA methods increase dramatically when
switching the backbone from (ResNet-50 + Hypercolumn) to DeiTs. This demonstrates that naı̈vely changing the backbone architecture
does not yield better performance.

Method Backbone #Parameters Same Different
Millions Mean Pixel Error↓

CL[2] ResNet-50 + Hypercolumn 23.8 0.71 2.50
LEAD[6] ResNet-50 + Hypercolumn 23.8 0.48 2.06
CL[2] DeiT-T 5.4 1.31 4.32
LEAD[6] DeiT-T 5.4 0.93 8.86
Ours DeiT-T 5.4 0.47 1.99
CL[2] DeiT-S 21.4 3.31 7.32
LEAD[6] DeiT-S 21.4 0.91 8.64
Ours DeiT-S 21.4 0.31 1.69

Table S3. Quantitative evaluations on landmark detection using different backbone architectures. We report the error as the percent-
age of inter-ocular distance on four human face datasets: MAFL, AFLWM , AFLWR and 300W. For AFLWR, we report the results on both
the original (AFLWRO) and corrected (AFLWRC ) datasets. We group the results by backbone architecture. We can see the performance
of CL and LEAD drops when using DeiTs on all datasets except for MAFL, which demonstrates that naı̈vely changing the backbone
architecture cannot necessarily yield better performance.

Method Backbone #Parameters MAFL AFLWM AFLWRO AFLWRC 300W
Millions Inter-ocular Distance (%)↓

CL[2] ResNet-50 + Hypercolumn 23.8 2.76 6.17 5.69 5.06 4.84
LEAD[6] ResNet-50 + Hypercolumn 23.8 2.44 6.05 5.71 5.11 4.87
CL[2] DeiT-T 5.4 2.51 6.72 5.98 5.43 4.92
LEAD[6] DeiT-T 5.4 2.40 6.81 6.03 5.41 5.03
Ours DeiT-T 5.4 2.20 5.89 5.54 4.86 4.22
CL[2] DeiT-S 21.4 2.43 6.73 5.88 5.29 4.90
LEAD[6] DeiT-S 21.4 2.39 6.88 5.91 5.32 5.10
Ours DeiT-S 21.4 2.08 5.33 5.40 4.69 3.94

regions, thus if we directly drop them, it will not affect the
evaluation results much. We plot the landmark matching re-
sults at different drop rate in Figure S2. We find the elbow
point at 25% to be the best choice.

3.2. Clustering

As clustering is a critical step of our proposed method, we
offer some quantitative ablations in this section. There are
two hyperparameters for clustering — the layer to apply
clustering and the number of clusters Kc. As shown in Ta-
ble S4, we first experiment with the first hyperparameter
and find applying clustering after the third layer to be the
best. Then we search for the best number of clusters and
report the results in Table S5. We find the best choice of the
cluster number to be 4.

3.3. Influence of the Correspondence Types

After attentive-inattentive separation, there are three pos-
sible correspondence types between the token pairs:

attentive-attentive, attentive-inattentive and inattentive-
inattentive. We study the importance of each type by set-
ting the respective repellence hyperparameter to zero and
evaluate how much the performance drops in Table S6. We
find that the relationship between attentive-attentive tokens
is the most important as the error increases the most when
we don’t enforce any repellence. This is expected as the
attentive tokens covers most of the landmark regions and
to distinguish between the different facial landmarks, the
attentive-attentive relationship should be given more im-
portance. We also find that the relation between attentive-
inattentive to be more important than inattentive-inattentive.
This is expected since the former may deliver intricate cues
regarding the dependencies between the landmark and criti-
cal non-landmark regions such as landmark orientation (left
vs. right) and landmark boundaries.



Figure S2. Landmark matching results (Mean Pixel Error) at dif-
ferent drop rate.

Table S4. Landmark matching results of applying clustering
after different layers. We report the mean pixel error between
the prediction and ground-truth on 1000 image pairs sampled from
MAFL.

Layer Same Diff. Layer Same Diff.
0 0.30 1.62 6 0.33 1.61
1 0.30 1.63 7 0.32 1.64
2 0.27 1.61 8 0.30 1.62
3 0.30 1.62 9 0.30 1.63
4 0.31 1.65 10 0.31 1.66
5 0.30 1.62 11 0.34 1.66

Table S5. Landmark matching results of using different num-
ber of clusters. We report the mean pixel error between the
prediction and ground-truth on 1000 image pairs sampled from
MAFL.

Number of clusters Same Diff.
1 0.33 1.68
2 0.32 1.66
4 0.27 1.61
8 0.30 1.62

Table S6. Importance of each relationship between patch to-
kens. We report the mean pixel error between the prediction and
ground-truth on 1000 image pairs sampled from MAFL.

attn-attn attn-inattn inattn-inattn Same Diff.
✗ ✓ ✓ 0.33 3.52
✓ ✗ ✓ 0.32 1.64
✓ ✓ ✗ 0.29 1.62
✓ ✓ ✓ 0.27 1.61

Table S7. Trainable components for each training stage and
evaluation task.

Stage 1 Stage 2 Evaluation
Landmark Matching Backbone Projector None
Landmark Detection Regressor

4. More Visualizations
4.1. Visualization of Landmark Similarity Map

We visualize some of the landmark similarity maps in Fig-
ure S3. We first obtain the dense feature map from each
compared method, and then computes the cosine similarity
between the landmark representation and the entire feature
map. We also group the results based on the property of the
original image — front faces are shown in the upper rows,
side faces are shown in the middle and the occluded faces
are shown in the bottom. When there is occlusion or we
can only see one side of the face, it is visibly difficult for
the network to output discriminative representations for the
occluded landmarks. As shown in Figure S3, our method
generates sharper and more localized similarity map than
prior arts.

4.2. Qualitative Results on Landmark Detection

Here, we show some qualitative results on landmark detec-
tion with our DeiT-B backbone in Figure S4. The model
outputs accurate landmark prediction across four datasets.
The model is also robust to different view angles and even
some occlusions, e.g. the fifth image in MAFL.

4.3. Failure Cases of Landmark Matching

Here we visualize some failure cases of landmark matching
in Figure S5. We find the main reason for these failure cases
is occlusion. In some cases we can only see one side of the
person’s face in the image, thus the query or ground-truth
landmark is occluded by other face parts. There are also
cases where the landmarks are directly occluded by hand
or cloth. In these cases, the query/test pixel representation
at the landmark location may not effectively represent the
landmark which leads to failure matching results.

5. Trainable Components for Each Stage
Our proposed method involves two training stages and the
evaluation protocols for two downstream tasks are differ-
ent as well. To offer a better understanding of how our
framework is trained and evaluated, we detailed the train-
able components for each stage and task in Table S7. Note
that only the component listed in the table is trained in
the corresponding stage, e.g., the Backbone (DeiT) is only
trained in stage 1 and is frozen in all other stages.



Original CL[2] SCE-MAE (Ours)

Figure S3. Visualization of landmark similarity map. We show the original images in the leftmost column, similarity map generated by
CL in the middle and ours results on the right. We show the similarity map for each landmark and ours results are better localized at the
corresponding landmark.

6. Limitations and Future Work

In this work, we presented a two-stage framework to ad-
dress self-supervised face landmark estimation tasks. De-
spite the significant performance gain, there are still some
limitations of the proposed method. Firstly, the use of the
cover-and-stride technique to expand feature map resolu-
tion and produce more fine-grained representations requires
additional forward passes during inference. Secondly, our
second stage refining relies on the similarity map generated
by the CLS token. The CLS token may be distracted when
there are other salient objects in the given image. However,
since our method operates on face crops, the dependency

on the CLS token is mostly offloaded onto the face crop
generation algorithm. Considering the limitations above,
future work may involve exploring more efficient methods
to gain high-resolution fine-grained feature representation
and more reliable algorithms to separate the landmark and
non-landmark regions. We hope our work will inspire more
research in this field.
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Figure S4. Qualitative results on landmark detection. The ground-truth and predictions are shown in green and blue dots respectively.
In some cases we can only see blue dots because the prediction is almost/exact the same as ground-truth.
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Figure S5. Failure cases of landmark matching.
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