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Overview. In the supplementary material, we first give a
preliminaries of primal-dual graph. Additionally, we pro-
vide detailed descriptions of experimental settings includ-
ing dataset, evaluation metrics, and implementation details.
Furthermore, we present more experimental results to verify
the effectiveness of our proposed method.

1. Primal-Dual Graph
In this section, we provide an overview of mathematical

notations and associated properties for primal-dual graphs.
[7].

• Primal Graph Let G = (V, E) be an undirected graph
with node set V and edge set E . The number of nodes
and edges are |V| and |E|, respectively. An adjacency
matrix A ∈ R|v|×|v| describes the connections be-
tween any two graph nodes in V , where A(i, j) = 1
if there is a connection between the node i and node j.

• Dual Graph Given the primal graph G, the dual graph
is denoted by Ĝ = (V̂, Ê), where V̂ denotes the set
of dual graph nodes; Ê denotes the set of dual graph
edges. The associated adjacency matrix is Â. Each
dual graph node v̂ ∈ V̂ corresponds to a primal graph
edge e ∈ E . There is a connection between dual graph
nodes if the corresponding primal graph edge shares a
primal graph node.

2. Experimental setting
Liver-Fibrosis-SR [21] contains 132 WSIs of liver col-

lected from 132 patients with NAFLD. The age ranges from
30-90. These WSIs are scanned under a lens 40×. The av-
erage image resolution is 61, 000 × 20, 000 by pixel. All
liver tissue sections are stained with Sirius Red (SR).

FibrosisMT-v1.0 contains 47 WSIs of the liver from two
age groups. [13] collected 18 WSIs from 16 children with
minor fibrosis (FIB-0 ∼ FIB-1). The average image reso-
lution is 30,000 × 20,000 by pixel. The other 29 WSIs are
collected by [21] from 29 adults. The average image resolu-
tion is 61,000 × 20,000 by pixel. These WSIs are scanned
under a lens 40×. All liver tissue sections are stained with
Masson’s and Triise (MT).

Each liver biopsy image has been assigned a fibrosis
stage (FIB 0-4) by an expert pathologist according to the
METAVIR [5] standard: no fibrosis (FIB-0), fibrous portal
expansion (FIB-1), few bridges or septa (FIB-2), numerous
bridges or septa (FIB-3), and cirrhosis (FIB-4).

Evaluation metrics. For each dataset, we randomly split
all patients into 3 groups and validate the method us-
ing 3-fold cross-validation. Following [15, 18, 19], we
choose the accuracy and area under the receiver oper-
ating characteristic values (AUC) as the evaluation ma-
trix. When calculating AUROC, the original multi-classes
(FIB-0 ∼ FIB-4) classification is reduced to multiple sets
of two-classes classification. It is designed to evalu-
ate the model’s ability to discriminate between two ad-
jacent fibrosis stages. Its corresponding evaluation index
are AUROCFIB≤0vsFIB≥1, AUROCFIB≤1vsFIB≥2,
AUROCFIB≤2vsFIB≥3, AUROCFIB≤3vsFIB≥4. The
macro-average AUROC is reported.

Data pre-processing. All variations in staining protocol
introduce appearance variability. To alleviate these vari-
ances, all WSIs are stain-normalized into standard color fol-
lowing [9,10]. We further normalize the image by perform-
ing channel-wise subtraction and division by its standard
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Figure 1. Distribution of detected fibers on WSIs from two
datasets.

deviation. The construction of primal-dual graphs is car-
ried out at 4X magnification which reduces the resolution of
WSIs at the starting point. Since the fiber and vessels tend
to be sparsely distributed in the tissue, we build the primal-
dual graphs on the WSI where only the information around
the nodes of the two graphs are extracted and aggregated.

Implementation details. Following [16], the algorithm 1
is utilized to implement the vessel/fiber segmentor. The
primal-dual graph is built using the NetworkX package
[6]. The ResNet-18 [8] is chosen as our feature encoder
F to learn deep features. We set the radius r = 64 by
default. To prevent over-fitting, we apply Dropout [14]
(ratio = 0.2) during training. The scorer function Sθ is
one full-connected layer followed by a softmax layer. Its
input dimension is dh, the output dimension is 1. The
PDGCN is implemented using PyTorch [11] with geomet-
ric package [4]. Gp and Gd are implemented with one
GATv2Conv [3] layer. Ge is implemented with one Meta-
Conv [2] layer. We worked with l = 1. The classifier
(MLP) consists of three fully-connected layers with a hid-
den feature dimension {512, 128, 5}. The feature dimen-
sion dh = dM = 512. The dimension of position features
dX = dY = 14.

3. Experimental Results

3.1. Generated Graph

Figure 2 shows samples of vessels or fibers regions rep-
resented by graphs. It demonstrates the benefit of represent-
ing its topology as a graph structure. The contour exhibits a
non-convex or circular (left to right) variation. The graph-
structured representation shows how the fiber regions are
connected and which way the fibers grow. The graphs align
well with the shape of the fiber region. This is because each
graph node is made up of points that come from the shape
of a vessel or fiber segment. Each node in the graph also
represents semantic information. It may be located in hep-
atic cells or in the background. These nodes usually belong
to the contour points indicating the end of fiber extension.

Algorithm 1 Vessel/fiber segmentor

Input: The WSI Ii
Step-1: Stain color normalization: apply stain normal-
ization operator stainN [12] to reduce the color and in-
tensity variations present in the stained image

I
′

i = stainN(Ii)

Step-2: Color space transformation:

f
′

i = RGB2Lab(I
′

i)

Step-3: Apply Mean-Shift algorithm to cluster each pixel

mi = MeanShift(f
′

i )

Step-4: Apply morphological operations Erosion and Di-
lations P to the masks to refine the segmentation results.

m
′

i = P(mi)

Output: The segmentation mask m
′

i.

Contour points may be located in tissue or non-tissue re-
gions. The graph nodes also consist of points derived from
the centers of vessel segments, representing central veins or
portal veins.

3.2. The Robustness of Vessel-Fiber Segmentor

As there are no annotations available for fibers and ves-
sels, an unsupervised segmentation algorithm is the best
choice for this task. Furthermore, due to the lack of a
large public liver biopsy image dataset and the complexity
of tissue structures, traditional machine learning methods
still dominate image processing in this domain. To further
verify the effect of the vessel/fiber segmentation module on
the fibrosis staging task, we implement the vessel/fiber seg-
mentor with three other algorithms HMRF-EM [20], GMM
[17], K-Means [1], and report the fibrosis staging perfor-
mance, as shown in Figure 3. The fibrosis staging can ben-
efit from accurate vessel/fiber segmentation results. As the
segmentation accuracy increases from 0.28 to 0.87, the ac-
curacy increases from 38.99 to 53.63. Developing an ad-
vanced segmentation algorithm is not the focus of our work,
we may leave it as future work.

3.3. Ablation Study On Feature Embedding

The image patch centered at graph nodes provides es-
sential information for graph representation. The size r of
image patches is important for building feature embedding.
We vary the tile size r = {16, 32, 48, 64, 80} and report the
performance. As shown in Figure 4, larger r means captur-
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Figure 2. Samples of graph representation on liver tissues. The node in the primal graph may be located at hepatic cells, portal veins,
central veins, or background.
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Figure 3. Fibrosis staging performance under different vessel/fiber
segmentation results
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Figure 4. Performance with varying size of image tile on Liver-
Fibrosis-SR dataset.

ing context information from a larger field. The AUC and
accuracy increase with image size r, reaching peaks of 84.0
and 53.63 at r = 64, respectively. A large field means pro-
viding efficient morphological information in a neighboring
region to distinguish locations and topology. When we fur-
ther increase the image size r, we observe the performance
decrease. Increasing the patch size can result in overlap-
ping adjacent graph nodes that contain similar information,
thereby reducing the discriminability of the graph topology.

Table 1. Variants of aggregation methods used for generating WSI-
level features.

Aggregation methods AUC Accuracy
MaxPooling 85.01 ± 5.46 47.02 ± 8.07
MeanPooling 86.52 ± 3.78 50.87 ± 8.12
SumPooling 86.18 ± 3.81 48.57 ± 8.00

AttentionPooling 82.76 ± 5.80 41.27 ± 7.93
TopKPooling 84.00 ± 3.59 53.63 ± 7.97
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Figure 5. Performance with varying saturation threshold sδ .

3.4. Ablation Study on Feature Aggregation

We implement different feature aggregation methods that
are commonly used in previous works on WSI-level feature
generation. The feature aggregation methods includes Max-
Pooling, MeanPooling, SumPooling, AttentionPooling, and
TopKPooling.

Table 1 summarizes the performance with different fea-
ture aggregation methods. TopKPooling achieves the high-
est accuracy of 53.63. TopKPooling enables the model to
focus on important fiber regions and discard the less impor-
tant regions. It works as a kind of regularization technique,
preventing the model from overfitting meaningless features.
As for other aggregation methods, MaxPooling, MeanPool-
ing, SumPooling, AttentionPooling, the performance is not



very competitive with TopKPooling. The reason behind this
could be that these methods integrate information from sin-
gle or all image tiles.

3.5. Investigation of Hyper-parameters

The saturation threshold sδ is a hyper-parameter. We
conduct experiments on the larger Liver-Fibrosis-SR dataset
to evaluate the performance under different saturation
thresholds. We vary the saturation threshold sδ ∈
[0.60, 0.69]. As shown in Figure 5, the accuracy increases
with a higher score saturation threshold sδ , reaching peaks
of 53.63 at sδ = 0.65. A larger sδ means that more image
tiles are selected and efficient information is provided for
diagnosis. When we further increase the saturation thresh-
old sδ , we observe the performance decreasing. Selecting
too many image tiles would distract the model by introduc-
ing those with lower scores.
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