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Supplementary Material

Summary. In this supplementary material, we elaborate
on the following subjects. We present an ablation study on
2D foundation models for segmentation in Sec. 7. We dis-
cuss the details of the mesh-based and point-based imple-
mentations in Sec. 8 and Sec 9. We provide more results
and implementation details for hierarchical segmentation in
Sec. 10, and for instance segmentation in Sec. 11. For more
qualitative results, please refer to our video.

7. Ablation Study on 2D Foundation Models
for Segmentation

We propose the methodology of OmniSeg3D as a general
paradigm for lifting inconsistent 2D segmentations to 3D,
as opposed to a model catering to any specific 2D segmenta-
tion model. Though we use SAM [26] as the 2D foundation
model in our implementation, any click-based segmentation
methods can be used as an alternative. For instance, we
adopt RITM [48] and SimpleClick [33] to demonstrate the
generalizability of our method.

Implementation details. Similarly to SAM, we imple-
ment an automatic mask generator with the substitute back-
bone. We feed the image with a grid of 32 ⇥ 32 point
prompts to the 2D segmentation model, retrieve all masks
and corresponding logit maps, filter out unstable masks ac-
cording to their sensitivity to the logit threshold, and filter
duplicates with non-maximum suppression. With the result-
ing overlapping 2D masks, we follow Sec. 3.1 to build the
hierarchical 2D representation and follow Sec. 3.2 to train
the 3D feature field. We then follow Sec. 4.1 to benchmark
these implementations.

Results. Tab. 5 lists the quantitative comparisons on hi-
erarchical and instance segmentation. Due to the fact that
RITM and SimpleClick do not specialize in part-level or
small object segmentation, switching to these backbones re-
sults in degraded performance on level-1 hierarchical seg-
mentation and instance segmentation. However, the level-
2 results remain comparable with the SAM-based Om-
niSeg3D, both outperforming vanilla SAM (see Tab. 1).
Fig. 7 shows the UMAP visualizations of the learned
semantic features on the room-0 scene in the Replica
dataset [49], volume rendered to a specific view. The SAM-
based implementation captures the most fine-grained hier-
archies within an object and demonstrates the sharpest seg-
mentation boundaries, but all three variants achieve consis-

tent high-level semantic clustering.

Method Hierarchical mIoU Instance
Lv.1 Lv.2 Avg. mIoU

Ours, w/ RITM [48] 77.9 90.6 84.3 74.9
Ours, w/ SimpleClick [33] 76.1 93.6 84.9 74.0

Ours, w/ SAM [26] 93.6 93.1 93.3 83.0

Table 5. Comparison of our method with different 2D foundation
models, on the room-0 scene in the Replica dataset.

(a) Image (b) Ours, w/ RITM [48]

(c) Ours, w/ SimpleClick [33] (d) Ours, w/ SAM [26]

Figure 7. Visualizations of 3D semantic features trained with al-
ternative segmentation backbones on the Replica dataset.

8. Details on Mesh-based Implementation
Our method is not restricted by the underlying 3D represen-
tations and can be easily extended to mesh based render-
ing pipeline. For mesh-based representation, we implement
a rasterization-based rendering pipeline based on NVD-
iffrast [28], in which only the points located on the mesh
will be sampled for rendering and optimization. Mean-
while, the network architecture remains the same as the vol-
ume rendering pipeline in the main paper.

Automatic discretization. We show automatic 3D dis-
cretization results in Fig. 8. Given an optimized 3D fea-
ture field, we can distill the feature onto the mesh vertices.
Then a feature clustering algorithm is implemented, sim-



Scene SAM [26] Ours, w/o hierar. Ours, w/o coord. OmniSeg3D (Ours)
Lv.1 Lv.2 Avg. Lv.1 Lv.2 Avg. Lv.1 Lv.2 Avg. Lv.1 Lv.2 Avg.

Office 0 91.4 87.0 89.2 93.4 74.5 83.9 90.9 89.5 90.2 89.7 88.8 89.3
Office 1 94.1 75.2 84.7 92.2 81.3 86.8 86.8 88.5 87.7 91.3 90.4 90.9
Office 2 92.6 79.1 85.8 93.1 76.4 84.7 92.8 82.9 87.9 93.0 87.0 90.0
Office 3 93.6 73.9 83.8 94.8 75.1 85.0 94.2 84.4 89.3 94.2 86.0 90.1
Office 4 90.7 82.5 86.6 91.7 81.4 86.5 88.2 86.4 87.3 87.2 90.1 88.7
Room 0 95.8 86.7 91.2 95.9 87.8 91.8 93.8 92.3 93.1 93.6 93.1 93.3
Room 1 93.3 75.9 84.6 93.1 85.8 89.4 92.0 89.4 90.7 91.8 90.7 91.3
Room 2 91.2 81.7 86.5 90.6 80.9 85.7 89.4 82.3 85.8 89.6 85.3 87.4

Mean 92.8 80.2 86.5 93.1 80.4 86.7 91.0 87.0 89.0 91.3 88.9 90.1

Table 6. Detailed quantitative comparison on point prompt based hierarchical segmentation on the Replica dataset [49].

Figure 8. Scene discretization by feature clustering on mesh auto-
matically without click.

ilar to the one proposed in ScanNet [13], where the sim-
ilarity is modelled as feature distance instead of geomet-
ric smoothness. As shown in Fig. 8, OmniSeg3D provides
high-quality mesh segmentation results. However, since no
clear hierarchy level is specified, different objects may be
segmented at different levels. To address this problem, in-
troducing more textual or image guidance to determine the
specific level in the hierarchy is worth exploring.

9. Details on Point-based Implementation
We provide the details of point-based implementation.
Specifically, we integrate OmniSeg3D into Guassian Splat-
ting [23]. This point-based representation supports easier
3D segmentation since we can simply cluster the interested
objects by thresholding all the points in the scene. Firstly,
we assign a view-independent feature vector (D = 16) to
each gaussian sphere. Then we follow the hierarchical con-
trastive learning framework proposed in the main paper to
optimize the per-point feature via differentiable rendering.
The difference is that we found the sphere surface normal-
ization term Lnorm may cause instability to training. There-
fore, we just keep the LH for feature field optimization.
During inference stage, we normalize each point feature be-
fore calculating the similarity score. For each scene, train-
ing usually costs about 30min on a single RTX 3090 GPU.
Please check our code for more implementation details.

Besides, we believe our OmniSeg3D will also be a sim-
ple plug-in for SDF-based [31, 53] rendering pipelines.

10. Results on Hierarchical Segmentation
We present detailed results and comparisons on hierarchi-
cal 3D segmentation, where our OmniSeg3D is compared
with SAM [26] and the basic implementation (without hier-
archical modelling) from Sec. 3.2. Tab. 6 shows the quan-
titative results for hierarchical segmentation on the Replica
dataset [49]. More implementation details about the evalu-
ation are also provided.

Comparison with SAM. We compare OmniSeg3D with
SAM, which predicts hierarchical masks with point prompts
as input. As shown in Tab. 6, even though OmniSeg3D is
not specifically designed for point-based segmentation, it
still outperforms SAM on the overall mIoU metric, espe-
cially on level-2. As illustrated in Fig. 9, SAM occasionally
delivers incomplete and inconsistent results for the same ob-
ject in different views, which means the hierarchical rela-
tionship modelled by SAM is unstable across views. As a
comparison, OmniSeg3D achieves much more stable per-
formance through implicitly aligning multi-view inconsis-
tent 2D segmentations and produces a stable cluster of se-
mantic features, where the hierarchical structure is well pre-
served. Moreover, the underlying neural 3D reconstruction
encourages the alignment of the 3D feature field with the
scene geometry. This contributes to improved foreground-
background separation, resulting in geometrically-guided
robust segmentations which may otherwise be ambiguous
from certain viewpoints.

Comparison with our basic implementation. Fig. 11
compares the intermediate score maps and final segmenta-
tions of our method with those of the basic implementation
in Sec. 3.2 (with contrastive learning, without hierarchical
modelling). Tab. 6 shows the quantitative results. As men-
tioned in Sec. 4.1, despite a minor drop in level-1 metrics,
OmniSeg3D achieves large improvements in overall cross-
level segmentation. The baseline method struggles to rec-

https://github.com/OceanYing/OmniSeg3D-GS
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Figure 9. Comparison of our method with SAM [26] on point-based hierarchical segmentation, on the Replica dataest [49]. Point prompts
are shown as black dots. The top-right image in each set is the score map obtained by our method. Colored pixels denote TP, FP and FN
respectively. IoUs of each predicted mask are shown in the top-left corner.



(a) Reference view

(b) Target views, SA3D

(c) Target views, ours

Figure 10. Qualitative comparison of our method with SA3D [26].

ognize entire objects in the scene due to the lack of proper
hierarchical modeling – only weak part-whole hierarchical
clues can be retained from the multi-view inconsistency of
SAM predictions. (For instance, an object might be seg-
mented as a whole in one view and broken into patches in
another view.) In contrast, our full method retains richer
hierarchical structures in the 2D image by exhaustively cor-
relating the segmented patches using a voting-based corre-
lation matrix, as formulated in Sec. 3.1. The correlations are
then implicitly aggregated and averaged in 3D with hierar-
chical contrastive learning. As depicted in the score maps
in Fig. 11, our hierarchical modelling pulls together parts
of the same object in the feature space while lowering the
similarities with the surroundings.

Implementation details. We elaborate on how we derive
the score maps in Eq. 7 in Sec. 4.1. We retrieve the volume
rendered feature maps f (normalized so that kfk = 1) from
the reference and target views, and compute the spatial co-
ordinate x corresponding to each pixel p from the rendered
depth. The similarity sim between pixels p1 and p2 is de-
fined as a distance-weighted feature similarity:

sim (p1,p2) = (1 + f1 · f2) e�↵kx1�x2k (9)

where ↵ is a non-negative constant depending on the spa-
tial extent of the dataset, and kx1 � x2k is the Euclidean
distance between the rendered 3D coordinates x1 and x2.

Given the point prompt p0, the score for any other pixel

pi in the image is defined as

score (pi) = sim (p0,pi) = (1+ f0 · fi) e�↵kx0�xik (10)

The predicted mask in image I is then produced by thresh-
olding the score map as in Eq. 8. Since the feature field
is queried and optimized in the 3D space, the spatial coor-
dinates x and the Euclidean distances serves as a free en-
hancement to the semantic feature field (with a similarity
metric defined on the concatenated feature (f ;x)), down-
weighting the similarity of an object with the background.
As shown in the quantitative comparisons regarding the
use of spatial coordinates in Tab. 6, the involvement of x
slightly boosts the overall performance but is not crucial for
our algorithm.

11. Results on Instance Segmentation
Comparison with SA3D [6]. In addition to the quanti-
tative results in Sec. 4.2, we compare our method qualita-
tively with SA3D on the counter scene in the Mip-NeRF
360 [2] dataset. The images in the dataset are extracted from
a video sequence. We follow the inference procedure of
SA3D by selecting the best out of the three masks of the
foreground object (partial observation of the plant and the
vase) in the first frame provided by SAM [26], and predict
object segmentations in the other frames. As illustrated in
Fig. 10, SA3D propagates the foreground segmentation to
irrelavant contents that are occluded in the first frame. In
comparison, our method correctly handles occlusions and
yields view-consistent segmentations of the object, thanks
to the learned feature field for all the objects in 3D. Please
refer to the supplementary video for the complete result.

Details on quantitative results. We elaborate on the
benchmarks in Sec. 4.2, including scribble-based seg-
mentation on NVOS dataset [45] (built upon LLFF
real dataset [37]) and multi-view mask propagation on
MVSeg [39] (6 forward-facing scenes from LLFF and 4
360° scenes) and Replica [49] (instance labels provided by
Semantic-NeRF [67], object list provided by SA3D [6])
datasets. For scribble-based segmentation, a pair of fore-
ground and background scribbles is specified in the refer-
ence view, which serves as input to the 3D segmentation al-
gorithm. The model then generates a mask in an unseen tar-
get view. The predicted mask is compared with the ground
truth 2D instance segmentation. For multi-view mask prop-
agation, given the ground truth 2D mask of an object in the
reference view, the algorithm is supposed to lift the mask
to 3D and propagate it to all other views. The predicted
masks are compared with the ground truth mask for each
view. Results for each scene are shown in Tab. 8, Tab. 9 and
Tab. 7.
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Figure 11. Comparison of the intermediate score maps and final segmentations of our method, with and without hierarchical modelling, on
point-based hierarchical segmentation on the Replica dataest [49]. Point prompts are shown as black dots. Colored pixels denote TP, FP
and FN respectively. IoUs of each predicted mask are shown in the top-left corner.

Implementation details. We sample positive pixels
{pi | i 2 Spos} uniformly from the foreground scribble or

instance mask and negative pixels {pj | j 2 Sneg} from the
background in the reference view. The score for each pixel



Figure 12. Interactive 3D segmentation with (a) a graphical user interface. For room-0 of Replica, we show the segmentation performance
on (b) hierarchical inference, (c) multi-object selection, and (d) 3D discretization with our GUI.

Method Office 0 Office 1 Office 2 Office 3 Office 4 Room 0 Room 1 Room 2 Mean

MVSeg [39] 31.4 40.4 30.4 30.5 25.4 31.1 40.7 29.2 32.4
SA3D [6] 84.4 77.0 88.9 84.4 82.6 77.6 79.8 89.2 83.0

OmniSeg3D (Ours) 83.9 85.3 89.0 87.2 78.3 83.0 79.4 88.9 84.4

Table 7. Breakdown results for instance segmentation on the Replica dataset [49].

pt in the target view is defined through the difference of
maximal similarities with positive and negative samples:

score (pt) = max
i2Spos

sim (pt,pi)� � max
j2Sneg

sim (pt,pj)

(11)
where � = 0.15 and sim is defined in Eq. 9. In practice, we
substitute the maxi2Spos operator for positive samples with
a 95th percentile to suppress noise. The binarization thresh-
old in Eq. 8 is determined by maximizing the IoU between
the predicted and ground truth masks in the reference view
Iref : maxth IoU ({pt 2 Iref | score (pt) > th},MGT ),
then the same threshold is applied to all other views for
evaluation.

12. Interactive 3D segmentation
We further show the details of our Graphic User Inter-
face (GUI) for convenient 3D segmentation based on Om-
niSeg3D. In Fig. 12(a), we show the options and oper-
ation buttons. By click on the screen, user can choose
the object of interest and achieve hierarchical segmenta-
tion by tuning the score threshold as shown in Fig. 12(b).
Besides, the multi-click mode enable user to select multi-
ple objects (c). By combining (b) and (c), user can dis-
cretize the whole scene in a hierarchical manner as shown
in Fig. 12(d). When using InstantNGP [42] based imple-
mentation of OmniSeg3D, the rendering speed consistently
reaches 20-30fps, and each interactive segmentation opera-
tion can be completed within 50ms.

Scene IoU (%) Acc (%)

Fern 82.7 94.3
Flower 95.3 98.9
Fortress 98.5 99.7

Horns (center) 97.7 99.6
Horns (left) 95.6 99.7

Leaves 92.7 99.5
Orchids 84.0 97.1

Trex 87.4 98.3

Mean 91.7 98.4

Table 8. Breakdown results for NVOS dataset [45].
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