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Supplementary Material

A. Additional Details for Baselines
We provide additional implementation details for each base-
line model. Our framework incorporates all baseline models
using the official code except Mean-Teacher. The results of
the experiments are reported based on the optimal hyperpa-
rameters that yield the best results in our scenario.
ActMAD [31] As ActMAD exclusively conducts experi-
ments on the KITTI dataset, where all images have a con-
stant height and width (e.g., 370 x 1224), ensuring consis-
tent feature map sizes for all samples. ActMAD can easily
align them along the spatial axis. However, in the general
setting of object detection tasks, such as the COCO bench-
mark set, where image sizes and width-to-height ratios vary,
aligning feature maps along the spatial axis becomes chal-
lenging due to different sizes. To adapt ActMAD to our
COCO ! COCO-C scenario, we perform center cropping
on the feature maps to match the size of training domain fea-
ture maps and the current test sample feature maps. We em-
ploy a learning rate of 1e-5 for COCO and 1e-4 for SHIFT,
respectively.
Mean-Teacher As the official code of TeST [38] is not
available, we implement the EMA-updated Teacher and
Student models following TeST [38], to conduct experi-
ments in our scenarios. TeST involves three forward steps
for a batch: forwarding weakly augmented samples through
the student network, strong augmented samples through the
teacher network, and original samples through the teacher
network for outputs. However, for a fair comparison, we
perform two forward steps, forwarding the original sample
through the teacher network and strong augmented sam-
ples through the student network, to make predictions be-
fore adaptation for every samples. We utilize a learning rate
of 1e-5 and set the EMA update rate for the teacher network
to 0.999.
NORM [37] We set the hyperparameter N that controls
the trade-off between training statistics and estimated tar-
get statistics as 128.
DUA [30] We set the momentum decay as 0.94, minimum
momentum constant as 1e-4, and the initial momentum de-
cay as 1e-3.

B. Effects of Bottleneck Reduction Ratio in
Adaptors

Table 5 shows the results for COCO ! COCO-C, SHIFT-
Discrete, and SHIFT-Continuous based on the dimension
reduction ratio (r) discussed in Section 3.2, representing

Table 5. Comparison of adaptation performance (mAP), the num-
ber of trainable parameters (# Params), and memory usage (Cache)
according to r of Sec. 3.2, the bottleneck reduction ratio in the
adaptor. We set r as 32 for all our experiments in the main paper.
SD / SC denotes SHIFT-Discrete / Continuous, respectively.

mAP # Params Cache

Backbone r COCO SD SC Num Ratio Avg. Max

Swin-T

1 22.6 40.0 21.3 4.33M 15.7% 0.75 7.51
2 22.6 40.3 23.2 2.17M 7.85% 0.73 7.27
4 22.6 40.4 23.2 1.09M 3.95% 0.70 7.06
8 22.6 40.4 23.2 0.55M 2.00% 0.69 7.00
16 22.6 40.4 23.2 0.28M 1.02% 0.67 6.98
32 22.6 40.4 23.2 0.15M 0.54% 0.65 6.96
64 22.6 40.4 23.2 0.08M 0.29% 0.65 6.95

ResNet50

1 22.5 38.7 20.8 6.31M 26.7% 1.55 5.89
2 22.4 38.7 20.9 3.16M 13.4% 1.51 5.64
4 22.3 38.6 21.3 1.59M 6.71% 1.49 5.52
8 22.3 38.6 21.4 0.80M 3.39% 1.48 5.46
16 22.2 38.6 21.4 0.41M 1.73% 1.48 5.43
32 22.2 38.7 21.4 0.21M 0.89% 1.48 5.41
64 22.1 38.7 21.3 0.11M 0.48% 1.48 5.40

Figure 6. Adaptation performance by class object frequencies.

the ratio of bottleneck size compared to the input size in
the adaptor. The adaptation performance remains consistent
across different r values. However, in the case of r = 1
in SHIFT experiments, mAP decreases, potentially due to
catastrophic forgetting resulting from a large number of
adaptable parameters. Since increasing the value of r sig-
nificantly reduces the number of learnable parameters and
memory usage, we set r to 32 in all other experiments.

C. Results Based on Class Frequencies
To demonstrate the effectiveness of our alignment strat-
egy as detailed in Eq.4, which utilizes class frequency as a
weight for region-level feature alignment, we report the ac-
curacy according to class frequencies in Fig.6. Our method
boosts rare class accuracy by 6% with region-level align-
ment (Lobj , Eq.4), and an additional 9% by applying fre-
quency weights (wk,t, Eq.4). This improvement arises from
avoiding the alignment of rare features with common class



Table 6. Comparison of mAP on COCO ! COCO-C based on whether environmental indicators for test domain changes are provided. TTA
(Test-Time Adaptation) reflects scenarios where information of test domain changes is provided to the model, allowing the adaptor to be
initialized accordingly. CTA (Continual Test-Time Adaptation), the focus of our main paper, on the other hand, describes more challenging
situations where no information about test domains is provided, preventing the model from initializing adaptors for new domains and
compelling it to use a single adaptor for all domains.

Noise Blur Weather Digital
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Swin-T [28] TTA 13.6 15.6 14.7 14.3 14.0 15.1 9.0 23.8 27.5 37.6 36.9 27.9 27.0 23.1 23.4 42.5 22.9
CTA 13.6 16.6 16.1 14.0 13.6 14.2 8.3 23.7 27.2 37.4 36.4 27.2 27.2 22.2 22.3 42.3 22.6

ResNet50 [11] TTA 12.7 15.1 14.0 13.9 10.7 11.6 6.5 22.5 26.3 39.0 38.9 26.2 23.0 21.8 22.5 43.6 21.8
CTA 12.7 17.8 17.5 12.4 11.5 11.3 6.6 22.8 26.9 38.6 38.5 28.0 25.1 21.2 22.2 41.8 22.2

Table 7. Comparison of mAP, the number of backward and forward passes, FPS, and memory usage between baselines and our models on
the continually changing KITTI datasets (Fog ! Rain ! Snow ! Clear). Our models improve mAP@50 by 15.1 and 11.3 for Swin-T
and ResNet50 backbone, respectively, compared to Direct-Test while maintaining comparable FPS. All experiments are conducted with a
batch size of 16.

mAP@50 # For. Steps # Backward Steps FPS Cache

Backbone Method Fog Rain Snow Clear Avg. All Fog Rain Snow Clear All Avg. Avg. Max

Swin-T

Direct-Test 46.9 69.5 28.7 89.6 58.7 936 0 0 0 0 0 24.7 0.4 5.5
ActMAD 53.3 78.1 41.2 90.7 65.8 936 234 234 234 234 936 16.8 0.8 21.9
Mean-Teacher 54.5 80.2 43.2 92.4 67.6 1,872 234 234 234 234 936 10.0 1.0 22.6
Ours 56.7 82.1 64.6 91.8 73.8 936 234 234 234 234 936 17.1 0.4 11.8
Ours-Skip 57.4 81.5 64.3 91.3 73.6 936 234 65 224 36 559 22.9 0.4 11.8

ResNet50

Direct-Test 33.4 63.5 29.8 88.6 53.8 936 0 0 0 0 0 27.7 0.8 4.3
NORM 38.4 66.4 35.9 87.3 57.0 936 0 0 0 0 0 27.7 0.8 4.3
DUA 34.8 67.7 30.9 89.0 55.6 936 0 0 0 0 0 27.7 0.8 4.3
ActMAD 40.4 66.5 42.7 84.5 58.5 936 234 234 234 234 936 18.5 1.6 22.6
Mean-Teacher 39.6 71.3 43.5 88.2 60.6 1,872 234 234 234 234 936 11.1 1.8 31.1
Ours 45.6 71.4 52.5 88.3 64.5 936 234 234 234 234 936 18.8 0.8 9.4
Ours-Skip 45.8 71.3 50.9 88.4 64.1 936 234 111 98 45 488 24.5 0.8 9.4

features and intensifying alignment of rare classes features.

D. Effects of Batch Size
In the main paper, all experiments were conducted with a
batch size of 4. However, due to the nature of test-time on-
line adaptation, the online adaptation should remain effec-
tive even with smaller batch sizes, allowing for immediate
processing of incoming data. Therefore, we conducted ex-
periments with extremely small batch sizes, such as 1 and
2. For ResNet50, the mAP scores are 22.2, 22.1, and 21.6 at
batch sizes of 4, 2, and 1, respectively. Similarly, for Swin-
T, the mAP scores are 22.6, 22.5, and 22.1, demonstrating
consistent performance across batch sizes.

E. Effects of Initialization on Adaptor: Com-
paring TTA and CTA Performance

To understand the initialization effects on adaptors, we
conduct ablation study where an indicator of test domain
changes is provided from envinronment directly. With this
signal, adaptors can be initialized for each new test domain,
akin to Test-Time Adaptation (TTA) [18, 45, 49], which
is easier than Continual Test-Time Adaptation (CTA) as it
adapts models to a single, i.i.d. test domain. However, for
the ResNet50 backbone, reinitializing adaptors at each do-

main change lower the average mAP by 0.4, resulting in
21.8, as shown in Tab. 6. Despite the more challenging CTA
scenarios compared to TTA, we speculate the mAP is higher
because some sequential domains with similar characteris-
tics provide a beneficial initialization for the adaptors. In
Tab. 6, for the ‘Shot’ and ‘Impulse Noise’ domains, which
are similar to previous ones, the performance drop from
CTA to TTA is sharper at 2.7 and 3.5, respectively; other-
wise, the impact is minimal. This highlights the importance
of good adaptor initialization, despite their quick adaptibil-
ity. While the average mAP of CTA is lower than that of
TTA for the Swin-T backbone, the mAP performance trends
across domain sequence follow a similar pattern.

F. Analyzing Adaptor Memorization for Previ-
ously Encountered Domains

To evaluate the memorization capability of adaptors for
previously encountered domains, we conduct experiments
on COCO-C in two scenarios: (1) repeating a long se-
quence that includes all 15 various corrupted test domains
(Fig. 7a), and (2) repeating a short sequence consisting of
only the ‘Gaussian ! Shot ! Implulse’ domains, which
share similar characteristics (Fig. 7b). In scenario (1), both
the ResNet50 and swin-T backbone show negligible perfor-
mance difference between the first and second sequences



(a) Long sequence repetition including all 15 corrupted test domains (b) Short sequence repetition

Figure 7. Performance comparison of adaptors in memorization capability for previously encountered domains.

for, suggesting that adaptors may not retain knowledge of
domains encountered earlier in a long sequence, leading
to no improvement upon revisiting domains. In contrast,
in scenario (2), there is a notable average performance in-
crease of 2.1 for ResNet50 and 0.7 for swin-T in the second
sequence, indicating that adaptors can remember and lever-
age knowledge from previously seen, similar domains, re-
sulting in a performance boost. This reveals that while adap-
tors possess a rapid adaptation capability, they also have a
tendency to forget domain knowledge over long periods, un-
derscoring the significance of similarity between immedi-
ately consecutive domains.

G. Further Dataset: Results on KITTI
We conduct additional experiments on the KITTI [8]
dataset, the commonly used object detection dataset consist-
ing of driving scenes with 8 classes (car, van, truck, person,
person sitting, cyclist, tram, misc). To simulate the continu-
ally changing domains, we use the following scenario (Fog
! Rain ! Snow ! Clear) as done in [31]. We use the
physics-based rendered dataset [10] for fog and rain and
simulate snow using the corruption library from [12]. We
use the same split of [31], which divides the 7,441 training
samples into 3,740 training and 3,741 test samples. We train
the Faster-RCNN using 3,741 training samples representing
the Clear attribute with Swin-Transformer and ResNet50
backbones, and evaluate it sequentially on Fog, Rain, Snow,
and Clear test samples.

We conduct all experiments with a batch size of 16 on 1
RTX A6000 GPU. Table 7 shows the mAP@50, the num-
ber of forward and backward steps, FPS, and memory usage
(Cache). Ours improves the mAP@50 by 15.1 and 10.7 for
Swin-T and ResNet50 backbones, respectively, compared
to Direct-Test. Compared to ActMAD and Mean-Teacher,
our model not only improves the adaptation performance
but also reduces memory usage, as we update only an ex-
tremely small number of parameters of the adaptor. Further-
more, using our skipping criteria of Sec. 3.4 with ⌧ = 1.1
and � = 1.05, we can improve FPS by more than 5.8 with-
out sacrificing mAP@50, resulting in much faster inference

speed compared to other TTA baselines.

H. Further Object Detector: Results on FCOS
To validate our methods across different object detec-
tors, we conduct experiments with FCOS, a representative
anchor-free one-stage detector, using the ResNet50 back-
bone on COCO ! COCO-C. Unlike RPN-based detec-
tors, FCOS directly predicts foreground classes directly at
each feature map position, excluding the background class.
For FCOS, we modify the object-level feature extraction
method described in Eq. 3 of the main paper by filtering
out features with a maximum class probability above 0.3,
as follows:
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The rest of the method is the same as described in the
main paper. When the average mAP for Direct-Test of
FCOS is 11.8, the adaptation performance increases to 13.5
(+1.7) with NORM, decreases to 10.9 (-0.7) with DUA.
Our method achieves 16.2 (+ 4.4), and with Ours-Skip, it
reaches 15.7 (+3.9) requiring only 14.6% backward steps.
This underscores the efficiency and efficacy of our online
adaptation method across different object detector types.

I. Qualitative Results
Figs. 8, 9, and 10 show the qualitative results of Ours and
Direct-Test which predict the samples without adaptation
for COCO ! COCO-C and SHIFT, respectively.

I.1. COCO ! COCO-C
Figs. 8 and 9 compare the prediction results for COCO
images corrupted. When the model encounters test images
with various corruptions sequentially (Gaussian-Noise !
Shot-Noise ! Impulse-Noise ! Defocus-Blur ! Glass-
Blur ! Motion-Blur ! Zoom-Blur ! Snow ! Frost !
Fog ! Brightness ! Contrast ! Elastic-Transform !
Pixelate ! JPEG-Compression ! Original), Fig. 8 and



(a) GT bounding boxes.

(b) Prediction results of Direct-Test.

(c) Prediction results of Ours.

Figure 8. Results of COCO images corrupted by Shot-Noise. In the analysis of Sec. 4.5, we conjecture that Ours largely skips adaptation
in Shot-Noise domain, despite the low mAP of Direct-Test, because the model has already adapted to a similar domain, Gaussian-Noise.
In (c), at the first step before adaptation to the Shot-Noise, our model already predicts ’Oven’ and ’Refrigerator’ which Direct-Test fails to
detect. This results in a much faster adaptation, and Ours successfully detects various objects, including rare ones such as ’Fire Hydrants’,
in the remaining images of the Shot-Noise domain.

9 shows the results when the test images are corrupted by
Shot-Noise and Pixelate, respectively. Compared to Direct-
Test, our model adapts to the current domain within a few
steps, such as 100 iterations, and detects various objects
very well in the remaining incoming images.

I.2. SHIFT-Discrete
Fig. 10 shows the qualitative results for SHIFT-Discrete. In
the SHIFT-Discrete scenario, the model encounters environ-
ments sequentially, transitioning from cloudy ! overcast
! foggy ! rainy ! dawn ! night ! clear. Figure. 10
selectively shows the foggy ! rainy ! dawn ! night se-
quence, where the domain gap from the original clear envi-
ronments is relatively large. Compared to Direct-Test, Ours
detects various objects such as ’cars’ and ’pedestrians’ re-
gardless of distribution changes.



(a) GT bounding boxes.

(b) Prediction results of Direct-Test.

(c) Prediction results of Ours.

Figure 9. Results for COCO images corrupted by Pixelate. In the Pixelate domain, where the model has already experienced various
corruptions in a long sequence, Ours initially incorrectly detects objects. In (c), it misidentifies a bed as a couch in the first step. However,
it rapidly adapts to the Pixelate domain and effectively detects various objects. Notably, even in cases where Direct-Test correctly identifies
objects but with low confidence, Ours detects them with much higher confidence.

(a) GT bounding boxes.

(b) Prediction results of Direct-Test.

(c) Prediction results of Ours.

Figure 10. Results for SHIFT-Discrete with continually changing attributes, foggy ! rainy ! dawn ! night.


	. Introduction
	. Related Work
	. Method
	. Preliminary
	. What to update: Adaptation via an adaptor
	. How to update: EMA feature alignment
	. When to update: Adaptation on demand

	. Experiments
	. Datasets
	. Implementation Detail
	. Baselines
	. Main Results
	. Additional Analyses

	. Conclusion
	. Additional Details for Baselines
	. Effects of Bottleneck Reduction Ratio in Adaptors
	. Results Based on Class Frequencies
	. Effects of Batch Size
	. Effects of Initialization on Adaptor: Comparing TTA and CTA Performance
	. Analyzing Adaptor Memorization for Previously Encountered Domains
	. Further Dataset: Results on KITTI
	. Further Object Detector: Results on FCOS
	. Qualitative Results
	. COCO  COCO-C
	. SHIFT-Discrete




