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Supplementary Material

A. Introduction
In the supplementary material, we provide the following de-
tails:
• The limitations of Pre-inpaint, including the inpainting

result.
• Object removal in novel view synthesis based on single

image MPI.
• Experiments for embedding image capacity.
• Visualization of merging two inpainting branch results.
• Detailed information about training loss.
• Detailed overall network architecture.
Moreover, we provide additional results as video samples.

B. Limitations of Pre-inpaint
This section describes the limitations of Pre-inpaint, includ-
ing the inpainted stereo images. Figure 1 shows stereo im-
ages before and after object removal, together with the dis-
parity maps of MPI generated from both images. Masked
areas with objects in the original image are removed and re-
stored by the inpainting model [3]. In the first example, the
disparity map shows that differences in the region where the
chair is removed lead to significant distortions in the MPI.
Furthermore, the second example illustrates a failure in MPI
generation due to the discrepancies in the inpainted regions.
Since pre-inpaint requires the same number of object masks
as the input images and shows distortions in the disparity
map, we consider pre-inpaint to be suboptimal.

C. Single Image Novel View Synthesis
An alternative scenario for object removal in MPI involves
removing objects from a single image and generating MPI
using a single image MPI generator. In this section, we
compare the performance of CORE-MPI with approaches
that use the inpainting model [3] for object removal fol-
lowed by single image MPI models, MINE [2] and Ada-
MPI [1]. For a fair comparison, we set the number of MPI
layers to 32 and measure the quality of the rendered view
compared to the target frame adjacent to the reference im-
age from RealEstate10K. As reported in Table 1, the qual-
ity of CORE-MPI results is superior, while the other ap-
proaches that estimate depth from a single image produce
results that differ from the target frame.

D. Embedding Image Capacity
We evaluate the quality of the embedding image and the ren-
dered images without object removal to validate the embed-
ding performance of CORE-MPI. Moreover, to evaluate the
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Figure 1. Pre-inpaint visualization: Inconsistencies in the in-
painted region following object removal from the stereo image ob-
struct MPI generation, leading to distortions in the disparity map.

Model PSNR↑ SSIM↑ LPIPS↓

MINE [2] 18.349 0.593 0.3565
Ada-MPI [1] 17.945 0.585 0.3464

CORE-MPI 21.354 0.720 0.3294

Table 1. Comparison of performance between single-image MPI
generators, which remove object before MPI generation, and
CORE-MPI.

Embedding Render
n PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

32 44.214 0.998 0.002 36.146 0.974 0.026
64 43.040 0.997 0.005 37.772 0.987 0.016
128 35.489 0.995 0.044 29.183 0.910 0.120

Table 2. Qualitative results of embedding performance based on
the number of depth layers.

potential of the encoding capacity, we conduct experiments
by varying the depth layer n in StereoMag [4]. As shown
in Table 2, the quality of the embedding image degrades as
n increases, with a significant degradation observed when n
is set to 128. While the quality of the rendered view shows
a slight improvement as n increase from 32 to 64, it signifi-
cantly worsens at 128. Future advancements in steganogra-
phy are expected to address a limitation.
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Figure 2. Intermediate steps visualization in merging inpainted
images. Mc highlights the area where the filled embedding image
is blurry, in contrast to the sharply restored reference image.

E. Visualization of Merging Process

Here we present a visualization of the intermediate steps in-
volved in merging inpainted images. Figure 2 shows the
inpainted embedding image Îe and the inpainted reference
image Îr and the combination ratio Mc. Notably, Mc high-
lights the areas where the filled embedding image appears
blurry compared to the sharply restored areas in the refer-
ence image. This visual representation illustrates the impor-
tance of the fusion module to detail in the merging process.

F. Detailed Information on Training Loss

This section describes the details of the loss functions used
in CORE-MPI. For the training of the restoration network,
the novel view loss uses randomly sampled values within
the range of -0.05 to 0.05 for offsets in the x, y, and z dimen-
sions on the RealEstate10K dataset. For the UCSD dataset,
these values are sampled from a broader range of -0.5 to 0.5.
The weights assigned to the various loss components used
in CORE-MPI are shown in Table 3.

G. Detailed Architecture

We provide the architecture of our proposed network within
CORE-MPI. The detailed structures of the embedding net-
work, the fusion module, and the restoration network are
presented in Table 4, Table 5, and Table 6, respectively. In
these tables, cat denotes the concatenation operation, while
+ denotes element-wise summation.
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Block Input Layer Channels Stride
Feature extractor

RGB extractor C
Group conv 96 → 96 1×1
ReLU
Group conv 96 → 32 1×1

Alpha extractor α
Conv 32 → 32 1×1
ReLU
Conv 32 → 32 1×1

Ref conv Ir

Conv 3 → 16 1×1
ReLU
Conv 16 → 3 1×1

UNet
Init conv cat(fMPI , fr) Conv 67 → 64 1×1

ResBlock1 Init conv

ReLU
Conv 64 → 64 1×1
ReLU
Conv 64 → 64 1×1

Down1 ResBlock1

ReLU
Conv 64 → 128 2×2
ReLU
Conv 128 → 128 1×1

Down2 Down1

ReLU
Conv 128 → 256 2×2
ReLU
Conv 256 → 256 1×1

ResBlock2 Down2

ReLU
Conv 256 → 256 1×1
ReLU
Conv 256 → 256 1×1

ResBlock3 ResBlock2

ReLU
Conv 256 → 256 1×1
ReLU
Conv 256 → 256 1×1

ResBlock4 ResBlock3

ReLU
Conv 256 → 256 1×1
ReLU
Conv 256 → 256 1×1

ResBlock5 ResBlock4

ReLU
Conv 256 → 256 1×1
ReLU
Conv 256 → 256 1×1

UP1 ResBlock5

Upsample
ReLU
Conv 256 → 128 1×1
ReLU
Conv 128 → 128 1×1

UP2 UP1 + Down1

Upsample
ReLU
Conv 128 → 64 1×1
ReLU
Conv 64 → 64 1×1

ResBlock6 UP2 + ResBlock1

ReLU
Conv 64 → 64 1×1
ReLU
Conv 64 → 64 1×1

ResBlock7 ResBlock6

ReLU
Conv 64 → 64 1×1
ReLU
Conv 64 → 64 1×1

Final Conv ResBlock7 ReLU
Conv 64 → 3 1×1

Final Activation Final Conv +Ir Tanh

Table 4. Embedding network architecture. Embedding network is composed of two downsampling blocks, four residual blocks, and two
upsampling blocks. In addition, the reference image is incorporated directly through a skip connection to preserve detail. Conv refers to a
2D convolutional layer with a 3×3 kernel size. Group conv indicates a convolutional layer with groups equal to the number of MPI layers,
and ReLU is an activation function that sets negative values to zero. Downsampling is performed using 2×2 stride convolutional layers,
while upsampling involves increasing resolution by a factor of two using the nearest neighbor approach. C denotes the color channels
of the MPI, α refers to the transparency channels of the MPI, and Ir represents the reference image. fMPI and fr are the feature maps
extracted from MPI and the reference image, respectively, by feature extractor. Tanh scales the output to between -1 and 1.



Block Input Layer Channels Stride

Down1 cat(Îe, Îr,M)

Conv 7 → 32 1×1
ReLU
Conv 32 → 32 1×1
MaxPool 2×2

Down2 Down1

ReLU
Conv 32 → 64 1×1
ReLU
Conv 64 → 64 1×1
MaxPool 2×2

Mid Down2

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 128 1×1

UP1 Mid + Down2

ReLU
Deconv 128 → 64 2×2
Conv 64 → 64 1×1
ReLU
Conv 64 → 64 1×1

UP2 UP1 + Down1

ReLU
Deconv 64 → 32 2×2
Conv 32 → 32 1×1
ReLU
Conv 32 → 32 1×1

ConvBlock UP2
ReLU
Conv 32 → 1 1×1
Sigmoid

Table 5. Fusion module architecture. Conv refers to a convolutional layer with a 3×3 kernel size and ReLU is an activation function that
sets negative values to zero. Maxpool is a 2D maxpooling layer with a 2×2 kernel size and Deconv indicates a 2D convtranspose layer
for upsampling. Îe denotes the inpainted embedding image, Îr refers to the inpainted reference image and M is the object mask. Sigmoid
represents the sigmoid activation function, which maps the output into a probabilistic range between 0 and 1.



Block Input Layer Channels Stride
ConvBlock Îm Conv 3 → 64 1×1

ResBlock1 ConvBlock

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ResBlock2 ResBlock1

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ResBlock3 ResBlock2

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ResBlock4 ResBlock3 + ConvBlock

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ResBlock5 ResBlock4

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ResBlock6 ResBlock5 + ResBlock3 + ConvBlock

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ResBlock7 ResBlock6

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ResBlock8 ResBlock7

ReLU
Conv 64 → 128 1×1
ReLU
Conv 128 → 64 1×1

ConvBlock ResBlock8 + ResBlock5 + ResBlock3 + ConvBlock

ReLU
Conv 64 → 256 1×1
Conv 256 → 128 1×1
Tanh

Table 6. Restoration network architecture. Restoration network consists of eight residual blocks with the same number of channels, three
convolution layers, and three skip connections are after the third, fifth and eighth residual blocks. Conv refers to a convolutional layer with
a 3×3 kernel size and ReLU is an activation function that sets negative values to zero. Îm denotes the merged embedding image. Tanh
scales the output to between -1 and 1.
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