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Supplementary Material

Overview
In this supplementary material, we present implementa-
tion details in Section A. Section B contains the details
of the LeGO architecture. Section C covers additional
experiments and their corresponding details. Section D
is dedicated to visualizing example results of the appli-
cations of our method. Lastly, Section E presents addi-
tional results. For additional results, please visit the project
page https://kwanyun.github.io/lego/.

A. Implementation Details
The implementation of LeGO including the surface defor-
mation networks DS and DT , and MAGE on an Nvidia
RTX 3090 GPU. The implementation details are sequen-
tially presented, in the order of with DS , DT , MAGE, and
the baselines for the experiments in the following para-
graphs.

Training DS To deform a template face to a person with a
different identity and expression, we trained the source sur-
face deformation network DS using the FLAME [3] param-
eter Φ and its corresponding face mesh, as described in the
main paper. We sampled 100k instances of Φ and their cor-
responding faces for self-supervised training, with Φ being
sampled from a uniform distribution to learn diverse iden-
tities and expressions. We jointly trained Mshape, Mexp,
and DS for 400 epochs with a fixed learning rate of 1e-6.
We adopted the SIMS approach to enable DS to handle di-
verse topologies by training it using surface points instead
of only sampling from mesh vertices.

Training DT To modify the template face to incorporate
styles while maintaining the same identity and expression
as DS , we trained the target surface deformation network
DT following the procedure outlined in the main paper.
The training began with an initial learning rate of 3e-5,
which gradually decreased to 1e-5 over 2,000 iterations.
The balancing weights in Equation (9) in the main paper,
λvert,λCLIP, λin, λacross, and λstyle were fixed at 80, 2e-3,
6e-3, 6e-3, and 4e-3, respectively.

During the training of DT , we adopted a hierarchical
rendering approach comprising three levels. The first level,
featuring the most enlarged views, focused on rendering lo-
cal facial parts such as the eyes, nose, and lips (illustrated in
the blue box in Figure 1). The second level includes close-
up views of faces from three directions, encompassing the

Figure 1. Detailed illustration of Lin and Lacross with hierarchi-
cal rendering. The blue box shows an example of the predefined
pivots of hierarchical rendering.

front and sides of the face. The last level comprises full-face
views from the same directions.

Training MAGE MAGE functions as an encoder that
transforms faces with diverse topologies into the latent
space of LeGO, specifically into the shared latent space of
DS and DT . NFR [5] encoders were fixed during train-
ing, while ID2ID, exp2exp, and latent mapper were jointly
trained. The model was trained with an initial learning rate
of 3e-4, which gradually decreased to 5e-5 over 12,000 it-
erations.

Figure 2. First two rows are identity exemplar mesh and style
exemplar mesh in our dataset, created for fine-tuning. Last row
shows deformation target meshes for experiments

https://kwanyun.github.io/lego/


Figure 3. Visualization of deformation network in detail.

Baseline Methods All baseline methods were using their
default settings as specified in their respective papers or the
official code provided by the authors. As specified in the
main paper, we utilized 8 different faces with correspond-
ing manually crafted meshes as a dataset, which are shown
in Figure 2. We also randomly sampled another 10 different
identities without expressions from FLAME decoder as de-
formation targets for experiments. For the text-based meth-
ods [1, 4], we used the deformation target as the source
template mesh and text to specify the target style. Eight
text prompts that describe styles are as follows: ”Bulldog
makeup”, ”Disney Dwarf”, ”Exaggerated smile”, ”Musical
Cats”, ”Orc”, ”Person with unicorn horn”, ”Person without
nose”, and ”Pixar child”.

B. LeGO Architecture
B.1 Deformation Network Architecure

The architectures of DS and DT are designed to compute
the displacement of a point, either from a vertex or surface,
and produce a deformed face output. The architectures are
inspired by DD3C [2]. The architecture of the deformation
network is illustrated in Figure 3. The latent code [zs;ze]
enters the hypernetwork, modifying the parameters of the
SIREN MLP [6]. Subsequently, as the point from the tem-
plate face traverses the network, the displacement is added
to the point, determining the output position.

B.2 Rationale Behind Using the Deformation Net-
work

The main reason to utilize a deformation network instead of
simply adding an displacement lies in the inability of han-

dling diverse inputs and outputs when the simple method is
used. Another reason is to avoid severe artifacts that may
occur when the identity of the deformation target and iden-
tity exemplar mesh are too different to directly transfer the
displacement from one face to another. Examples of these
artifacts are illustrated in Figure 4.

Exemplar Deformation target
Displacement 

transfer Ours

Figure 4. Artifacts occurred by simple displacement transfer. The
red boxes show the close-up views. The boxes colored in red show
the result of simple dispacement with artifacts(sunk nose and pen-
etration on eye region) unlike Ours, colored in black.

C. Additional Experiments
C.1 Comparison with NFR

NFR [5] is a method that can transfer the expression of a
target facial mesh to an unrigged identity mesh of arbitrary
topology. Because NFR is specifically designed for expres-
sion transfer, it is difficult for the method to preserve both
identity and style in the resulting mesh. However, because
NFR is the backbone of MAGE, we compared it with our



Figure 5. Comparison with NFR and LEGO. Becaus NFR is designed for expression transfer, it’s expression encoder cannot preserve
identity.

method. As shown in Figure 5, although NFR could gener-
ate a stylized mesh, it failed to preserve the original identity,
resulting in all similar outcomes that reflect the style exem-
plar.

C.2 Ablation on Direct Style Loss

As stated in the main paper, ”Ours” and ”Ours w. di-
rect Lstyle” loss produced the least amount of surface
artifacts. Here, the style loss that directly compared
DT ([zs

samp; ze
samp]) and MT , it forced the stylized face

to have the same expression as MT . In contrast, ours that
compared DT ([zs

samp; ze
ref ]) and MT successfully main-

tained animatability. This is illustrated in Figure 6.

D. Applications
D.1 Visualization of Results Produced by the Appli-
cations.

We present additional results of style interpolation in Fig-
ure 7. These results demonstrate that our method can ef-
fectively construct the latent space for identities and styles,
ensuring that even when mixing weights, the person’s iden-
tity remains unchanged while the styles transition smoothly.
This finding inspired the generation of new styles by blend-
ing existing ones. Additionally, we showcase further results
on generating stylized 3D faces from 2D portraits, indicat-
ing that our method does not require a mesh as input; in-
stead, any image can be used to create a stylized face with
a specific identity, thereby broadening the practical applica-
tion of our method.

D.2 Retargeting from Video

Retargeting is one of widely used applications in anima-
tion in which target follows the animation of the source.
We performed an additional experiment on video driven

stylized 3D face retargeting. Using a metrical photometric
tracker [9], we can obtain the shape and expression param-
eters of FLAME from video, which can be directly adopted
to LeGO. From these parameters, we achieved 3D stylized
face retargeting as shown in Figure 8. Additional results are
shown in the supplementary video.

E. Additional Results

We present additional stylization results produced by LeGO
trained with a paired exemplar. Figures 9, 10 and 11 dis-
play the results of all eight styles and deformation targets
with different topologies.
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Figure 6. Comparison with Ours and Ours w. direct Lstyle. Both methods generated the style well while Ours followed the expression
from the deformation target better compared to Ours w. direct Lstyle.
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Figure 8. Retargeting from video, two different styles are shown for each input. Left examples are from Talking-head-1KH [8] and right
examples are from MEAD dataset [7].



Figure 9. Additional results on all 8 different styles.



Figure 10. Additional results on all 8 different styles.



Figure 11. Additional results on all 8 different styles.


