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Supplementary Material

In this supplementary document, we present visualiza-
tions of probe distribution, provide detailed analyses of the
ablations along with observations, discuss the limitations
and future work, and offer more quantitative and qualitative
results.

A. Light Field Probes Distribution.

We propose distributing light field feature probes near the
camera trajectory, utilizing the Farthest Point Sampling
(FPS) algorithm to selectively determine L̂ positions. The
distribution of these feature probes within the scene and
their corresponding content is depicted in Fig. 1. To en-
hance the visualization of the probe distribution within tar-
get scenes, we additionally present the calibration point
cloud. These calibration point clouds are not used in train-
ing and are only for visualization purposes.

B. Ablation Details.

We conduct ablations on key components, including the
point query scheme, probe distributions, period factor, and
factor aggregation module. These ablations are performed
on a small indoor scene and a larger scene encompassing
distant and close viewpoints.

Our observations are as follows:

• Core factor modeling is critical. Disabling either factor V̄
or M̄ hampers reconstruction capabilities. Factor M̄ sig-
nificantly influences overall quality, while factor V̄ im-
proves fine-grained detail reconstruction qualitatively.

• Selecting factors close to the target camera yields sub-
stantial improvements, particularly for the objects with
multi-scale appearances, where the camera neighborhood
strategy effectively simulates a mipmap representation.

• Smaller scenes show less sensitivity to probe distribution
than larger scenes. Farthest point position sampling (FPS)
provides a more uniformly distributed set of probes, facil-
itating stable reconstruction across different areas.

• Coordinate scaling notably improves performance, espe-
cially in scenes captured from a small angle range. For
instance, in the Free dataset, where most images are cap-
tured from a single viewing direction (as depicted in the
middle of Fig. 1). The scale factor enables a more effi-
cient use of the model capabilities.

• Factor aggregation delivers significant performance
boosts than naive feature concatenation, benefiting from
the order-invariant weighted fusion design.

In Fig. 2, we qualitatively illustrate the performance dif-
ferences resulting from various design choices. Our full

model provides high-quality reconstruction and better sta-
bility for diverse natural scenes that vary in extent and spa-
tial granularity.

C. Limitations and Future Work.
Our NeLF-Pro demonstrates a remarkable ability to achieve
high-fidelity novel view synthesis across a wide range of
natural scenes, with various levels of spatial granularity.
However, our approach currently cannot handle distrac-
tions, such as exposure changes and moving objects, and
our method tends to produce ‘floaters’ in these regions.
Combining our method with techniques like feature space
regularization [1], appearance embedding [4] or pixel-wise
loss reweighting [7] could be beneficial. In addition, our
work cannot support fast rendering, it still takes about 2.6
seconds to render a 960×540 image. Incorporating fast ren-
dering techniques, such as post-baking [6] is an orthogonal
direction to our work.

Future Work. To further enhance the per-scene reconstruc-
tion quality, a possible solution is to integrate our repre-
sentation with advanced multi-level modeling [5] or cone
tracing point sampler [2, 3]. We leave this combination as
future work. Furthermore, while this paper demonstrates
success in per-scene optimization, another interesting direc-
tion for future work involves the exploration and learning of
general core and basis factors across various scenes. By an-
alyzing a large-scale dataset, we can leverage data priors
not only to improve quality but also to potentially enable
new applications, such as in the development of generative
models. In the ablation study, a notable finding is that ma-
trix factors alone, without the vector core factor, can yield
satisfactory reconstructions in small-scale scenes. This as-
pect is particularly advantageous for convolutional neural
networks.

D. More Visual Results.
We show more qualitative results in Fig. 3, Fig. 4, and
Fig. 5. Our NeLF-Pro is able to better preserve detail, sharp-
ness, and thin structures more effectively than the baselines.

E. Per-scene Breakdown.
In Table 1 and Table 2, we provide breakdowns of the quan-
tity metrics for the Free dataset [9] and the mip-NeRF360
dataset [2]. Our NeLF-Pro achieves consistently better ren-
dering quality compared to previous grid-based approaches.
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Figure 1. The distribution of light field feature probes. The green spheres denote basis factors and the blue dots are core factors. We
densely distribute the basis factors in the scene and sparsely distribute the core factors, only using 3 for the small scenes, and 16 for the
Scuol scene shown on the right side.
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Figure 2. Qualitative results for ablation study. We conduct the ablations using one indoor-small-scene and outdoor-large-scene.
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Figure 3. More Qualitative Results on the Free Dataset [9].

Method Hydrant Lab Pillar Road Sky Stair Grass Avg
NeRF++ [10] 22.21 21.82 25.73 23.29 23.91 26.08 21.26 23.47
mip-NeRF360 [2] 25.03 26.57 29.22 27.07 26.99 29.79 24.39 27.01
Plenoxels [1] 19.82 18.12 18.74 21.31 18.22 21.41 16.28 19.13
DVGO [8] 22.10 23.78 26.22 23.53 24.26 26.65 20.75 23.90
Instant-NGP [5] 22.30 23.21 25.88 24.24 25.80 27.79 21.82 24.43
F2-NeRF [9] 24.34 25.92 28.76 26.76 26.41 29.19 22.87 26.32
NeLF-Pro (ours) 24.92 26.39 29.56 27.65 27.06 29.55 24.00 27.02
Our SSIM 0.770 0.834 0.818 0.834 0.873 0.853 0.629 0.802
Our LPIPS 0.260 0.251 0.233 0.231 0.217 0.203 0.398 0.256

Table 1. Per-Scene breakdown on the Free dataset. The baseline method scores are sourced from F2-NeRF; however, F2-NeRF does not
furnish detailed per-scene breakdowns for SSIM and LPIPS metrics.
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Figure 4. More novel view synthesis results on mip-NeRF360 Dataset [2].

Method Bicycle Bonsai Counter Garden Kitchen Room Stump Avg
NeRF++ [10] 22.64 29.15 26.38 24.32 27.80 28.87 24.34 26.21
mip-NeRF360 [2] 23.99 33.06 29.51 26.10 32.13 31.53 26.27 28.94
Plenoxels [1] 21.39 23.65 25.23 22.71 24.00 26.38 20.08 23.35
DVGO [8] 22.12 27.80 25.76 24.34 26.00 28.33 23.59 25.42
Instant-NGP [5] 22.08 29.86 26.37 24.26 28.27 28.90 23.93 26.24
F2-NeRF [9] 22.11 29.65 25.36 24.76 28.97 29.30 24.60 26.39
NeLF-Pro (ours) 22.42 31.28 27.52 25.08 29.79 30.10 24.58 27.27
Our SSIM 0.496 0.907 0.823 0.691 0.868 0.871 0.615 0.753
Our LPIPS 0.500 0.289 0.366 0.331 0.240 0.367 0.427 0.360

Table 2. Per-Scene breakdown on the mip-NeRF360 dataset. The baseline method scores are sourced from F2-NeRF; however, F2-
NeRF does not furnish detailed per-scene breakdowns for SSIM and LPIPS metrics.



GTmip-NeRF360 GridNeRF F2-NeRF NeLF-ProNeLF-Pro (ours)

56 Leonard

56 Leonard

3DGS

Scuol

Scuol

Scuol

KITTI360

KITTI360

KITTI360

Figure 5. More novel view synthesis results on the Large Scale scenes.
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