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Supplementary Material

In this supplementary material, we first describe the abla-
tion studies for various components of our design on FMA-
Net in Sec. A. Subsequently, in Sec. B, we introduce
a lightweight version of FMA-Net and present the perfor-
mance of VSRDB methods and all possible combinations
of sequential cascade approaches in REDS4 [52]. Addi-
tionally, we also provide additional qualitative comparison
results and a demo video. Finally, we discuss the limitations
of our FMA-Net in Sec. C.

We also recommend the readers to refer to our project
page at https://kaist-viclab.github.io/
fmanet-sitewhere the source codes and the pre-trained
models are available for the sake of reproducibility.

A. Ablation Studies

A.1. Effect of flow-guided dynamic filtering (FGDF)

Fig. 8 shows the spatial quality (PSNR) and temporal
consistency (tOF) performance over average motion mag-
nitudes which are also tabulated in Table 3 of the main pa-
per. As shown in Fig. 8, our Flow-Guided Dynamic Fil-
tering (FGDF) significantly outperforms the conventional
dynamic filtering [33, 35, 38] in terms of PSNR and tOF
metrics across all average motion magnitudes. It is noted
that our FGDF gets more superior as the average motion
magnitudes increase, indicating the effectiveness of FGDF,
which is aware of motion trajectory, over the conventional
dynamic filtering based on fixed positions and surround-
ings.

A.2. Design choices for FMA-Net

Table 5 presents more detailed results of the ablation
study from Table 4 of the main paper, additionally including
the reconstruction performance of the degradation learning
network NetD. The tendency of performance changes on
the selection of components for NetD are similar to those
for NetR, demonstrating the effectiveness of our multi-
flow-mask pairs (Table 5(a-b, j), loss functions (Table 5(d-
e, j)), training strategy (Table 5(f, j)), and multi-attention
module (Table 5(g-j)). It should be noted that the two re-
construction performances of NetD in Table 5(h) (CO attn
+ SFT [68]) and Table 5(j) (CO attn + DA attn) are the same
because the SFT [68] and DA attn are only utilized in NetR.
The same tendency is also observed in Table 5(g,i) because
the same NetD is used.

A.3. Number of input frames

Table 6 shows the performance of FMA-Net accord-
ing to the different numbers of input frames T . It shows
that as T increases, the performance of both NetD and
NetR improves, indicating that the FMA-Net effectively
utilizes long-term information. Considering the trade-off
between computational complexity and performance, we fi-
nally adopted T = 3.

A.4. Iterative Feature Refinement

Fig. 9 illustrates the iterative refinement process of the
warped feature FR,i

w in FRMA blocks of NetR across three
different scenes. In these scenes, it is evident that FR,i

w be-
comes sharper and more activated through iterative refine-
ment, demonstrating the effectiveness of our iterative fea-
ture refinement with multi-attention (FRMA) block in im-
proving the overall performance for VSRDB.

A.5. Multi-flow-mask pairs

Fig. 10 illustrates an example of multi-flow-mask pairs
fR,M in NetR. In contrast to conventional sharp LR VSR
methods [5, 9, 50, 62] that only utilize smooth optical flows
with similar values among pixels belonging to the same ob-
ject, the optical flows in Fig. 10 include not only smooth op-
tical flows (# 2, # 7, and # 9 in Fig. 10) but also sharp optical
flows (# 1, # 3-6, and # 8 in Fig. 10) with varying values
among pixels belonging to the same object. This distinc-
tion arises from our multi-flow-mask pairs f not only align
features as in conventional VSR methods, but also sharpen
blurry features where the blur is pixel-wise-variant, even
among pixels belonging to the same object. The smooth
optical flows align features, while the sharp optical flows
sharpen them. Fig. 9(c) shows the iterative refinement pro-
cess of the aligned and sharpened warped feature Fw us-
ing the multi-flow-mask pairs f in the same scene as Fig.
10, demonstrating the effectiveness of our multi-flow-mask
pairs for VSRDB.

A.6. Visualization of FGDF process

Fig. 11 illustrates the proposed flow-guided dynamic fil-
tering (FGDF) process, where Fig. 11(a) shows the flow-
guided dynamic downsampling process of NetD, and Fig.
11(b) illustrates the flow-guided dynamic upsampling pro-
cess of NetR. In particular, in Fig. 11(a), the two degrada-
tion kernels of the neighboring frames tend to have peaky
values around their own centers, because NetD filters a
sharp HR sequence Yw aligned to the center frame index c
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based on the image-mask pair fY for Y . This allows NetD

to effectively handle large motions with relatively small-
sized kernels, as demonstrated in Fig. 8 and Table 3 of
the main paper. Similar to NetD, NetR filters the aligned
blurry LR sequence Xw to the center frame index c by the
image flow-mask pair fX for X . We normalized the restora-
tion kernels KR such that their kernel weights are allowed
to take on positive and negative values, where the negative
kernel weights can facilitate the deblurring process (dark re-
gions of the kernels in Fig. 11(b) represent negative values),
similar to [38]. We empirically found that this approach
can restore the low-frequencies more effectively than sim-
ple interpolation methods such as bilinear and bicubic inter-
polations. Combining these restored low frequencies with
the high-frequency details Ŷr predicted by NetR in a resid-
ual learning manner results in faster training convergence
and better performance compared to residual learning with
bicubic upsampling or without residual learning.

A.7. The Number of FRMA Blocks M

Table 7 shows the performance of FMA-Net according to
the different numbers of FRMA Blocks M . It shows that as
M increases, the performance of FMA-Net improves, indi-
cating that the stacked FRMA blocks can effectively update
features. Besides Table 7, as can also be seen in Table 1
of the main paper, our smallest FMA-Net variant (M = 1)
even shows superior performance than the previous SOTA
methods.

B. Detailed Experimental Results
B.1. FMA-Nets

We first introduce FMA-Nets, a lightweight model of
FMA-Net. FMA-Nets is a model that changes the number
of FRMA blocks, M , from the original 4 to 2, with no other
modifications. Table 8 compares the quantitative perfor-
mance of FMA-Nets on REDS4 [52] dataset with one VS-
RDB method (HOFFR [18]), four retrained SOTA methods
(Restormer∗ [73], GShiftNet∗ [43], BasicVSR++∗ [9] , and
RVRT∗ [48] ) for VSRDB on REDS [52], and our FMA-
Net. Our FMA-Nets demonstrates the second-best perfor-
mance, maintaining performance while reducing memory
usage and runtime.

B.2. Clip-by-clip Results on REDS4

Table 9 shows the performance of the clip-by-clip results
on REDS4 [52] for VSRDB methods and all possible com-
binations of the sequential cascade approaches. It shows
that our FMA-Net exhibits the best performance on all
REDS4 clips consisting of realistic and dynamic scenes. In
particular, compared to RVRT∗ [48], our FMA-Net achieves
PSNR improvement of 0.35 dB in Clip 000, a scene with
small motion, improvements of 1.62 dB and 1.58 dB in

Clips 011 and 020, scenes with large motion, respectively.
This demonstrates the superiority of FMA-Net over existing
SOTA methods, especially in scenes with large motion.

B.3. Visualization Results

We show more qualitative comparison results among the
proposed FMA-Net and other SOTA methods on two bench-
mark datasets. The results for REDS4 [52] and GoPro [51]
are shown in Figs. 12-13 and Fig. 14, respectively.

B.4. Visual Comparisons with Demo Video

We provide a video at https://www.youtube.
com/watch?v=kO7KavOH6vw to compare our FMA-
Net with existing SOTA methods [9, 43, 48]. The demo
video includes comparisons between FMA-Net and SOTA
methods on two clips from the REDS4 [52] dataset and one
clip from the GoPro [51] dataset.

C. Discussions
C.1. Learning Scheme

We train FMA-Net in a 2-stage manner which requires
additional training time rather than end-to-end. This choice
is made because, during the multi-attention process of
NetR, the warped feature Fw is adjusted by the predicted
degradation from NetD in a globally adaptive manner.
When the network is trained end-to-end, in the initial train-
ing stages, Fw is adjusted for incorrectly predicted kernels
due to the random initialization of weights, which adversely
affects the training process (The performance comparison
between end-to-end and 2-stage strategies can be found in
Table 5(f, j))). To address this, we adopt a pre-training
strategy for NetD, which inevitably leads to longer train-
ing times compared to the end-to-end approach.

C.2. Limitation: Object Rotation

In extreme conditions such as object rotation, it is chal-
lenging to predict accurate optical flow, making precise
restoration difficult. Fig. 15 illustrates the restoration re-
sults in a scene with object rotation, showing the failure of
all methods, including our FMA-Net, in restoring a rotating
object. The introduction of learnable homography param-
eters or the adoption of quaternion representations could
be one option to enhance the performance in handling ro-
tational motions.
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Figure 8. Flow-guided dynamic filtering (FGDF) vs. conventional dynamic filtering [33, 35, 38]. Trendline visualization for Table 3 of the
main paper.

Methods
# Params Runtime NetD (blurry LR X̂c) NetR (sharp HR Ŷc)

(M) (s) PSNR ↑ / SSIM ↑ / tOF ↓ PSNR ↑ / SSIM ↑ / tOF ↓
The number of multi-flow-mask pairs n

(a) n = 1 9.15 0.424 44.80 / 0.9955 / 0.096 28.24 / 0.8151 / 2.224
(b) n = 5 9.29 0.429 45.37 / 0.9960 / 0.086 28.60 / 0.8258 / 2.054

Deformable Convolutions [13]
(c) w/ DCNs (#offset = 9) 10.13 0.426 45.17 / 0.9956 / 0.093 28.52 / 0.8225 / 2.058

Loss Function and Training Strategy
(d) w/o RAFT & TA Loss 9.62 0.434 45.28 / 0.9958 / 0.084 28.68 / 0.8274 / 2.003
(e) w/o TA Loss 9.62 0.434 45.33 / 0.9959 / 0.083 28.73 / 0.8288 / 1.956
(f) End-to-End Learning 9.62 0.434 44.14 / 0.9947 / 0.107 28.39 / 0.8190 / 2.152

Multi-Attention
(g) self-attn [73] + SFT [68] 9.20 0.415 45.37 / 0.9959 / 0.085 28.50 / 0.8244 / 2.039
(h) CO attn + SFT [68] 9.20 0.416 45.46 / 0.9961 / 0.082 28.58 / 0.8262 / 1.938
(i) self-attn [73] + DA attn 9.62 0.434 45.37 / 0.9959 / 0.085 28.80 / 0.8298 / 1.956
(j) Ours 9.62 0.434 45.46 / 0.9961 / 0.082 28.83 / 0.8315 / 1.918

Table 5. Ablation study on the components in FMA-Net.
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Figure 9. Visualization of iterative refinement process of warped feature FR,i
w in FRMA blocks of NetR. The brighter the pixel, the more

activated it is.
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(a) Optical flow {𝑓𝑓𝑐𝑐→𝑐𝑐−1
𝑗𝑗 }𝑗𝑗=1:𝑛𝑛 and corresponding mask {𝑜𝑜𝑐𝑐→𝑐𝑐−1

𝑗𝑗 }𝑗𝑗=1:𝑛𝑛 (b) Optical flow {𝑓𝑓𝑐𝑐→𝑐𝑐+1
𝑗𝑗 }𝑗𝑗=1:𝑛𝑛 and corresponding mask {𝑜𝑜𝑐𝑐→𝑐𝑐+1

𝑗𝑗 }𝑗𝑗=1:𝑛𝑛

Figure 10. Visualisation of multi-flow-mask pairs fR,M in NetR.

T
# Params Runtime NetD NetR

(M) (s) PSNR ↑ / SSIM ↑ / tOF ↓ PSNR ↑ / SSIM ↑ / tOF ↓
1 9.03 0.206 42.04 / 0.9908 / 0.182 27.33 / 0.7866 / 2.672
3 9.62 0.434 45.46 / 0.9961 / 0.082 28.83 / 0.8315 / 1.918
5 9.94 0.737 45.74 / 0.9965 / 0.076 28.92 / 0.8347 / 1.909
7 16.61 1.425 46.24 / 0.9969 / 0.068 29.00 / 0.8376 / 1.856

Table 6. Ablation study on the number of input frames T .

M # Params (M) Runtime (s) PSNR ↑ / SSIM ↑ / tOF ↓
1 6.3 0.147 28.07 / 0.8109 / 2.24
2 7.4 0.231 28.46 / 0.8212 / 2.08
4 9.6 0.427 28.83 / 0.8315 / 1.92

Table 7. Ablation study on the number of FRMA blocks M .

Methods # Params (M) Runtime (s) REDS4
PSNR ↑ / SSIM ↑ / tOF ↓

HOFFR [18] 3.5 0.500 27.24 / 0.7870 / -
Restormer∗ [73] 26.5 0.081 27.29 / 0.7850 / 2.71
GShiftNet∗ [43] 13.5 0.185 25.77 / 0.7275 / 2.96

BasicVSR++∗ [9] 7.3 0.072 27.06 / 0.7752 / 2.70
RVRT∗ [48] 12.9 0.680 27.80 / 0.8025 / 2.40

FMA-Nets (Ours) 7.4 0.231 28.46 / 0.8212 / 2.08
FMA-Net (Ours) 9.6 0.427 28.83 / 0.8315 / 1.92

Table 8. Quantitative comparison on REDS4 for ×4 VSRDB. All results are calculated on the RGB channel. Red and blue colors indicate
the best and second-best performance, respectively. Runtime is calculated on an LR frame sequence of size 180× 320. The superscript ∗

indicates that the model is retrained on the REDS [52] training dataset for VSRDB.
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Figure 11. Visualization of the flow-guided dynamic filtering (FGDF) process, including two image flow-mask pairs (fY and fX ) and
two dynamic kernels (KD and KR): (a) Flow-guided dynamic downsampling (Eq. 7 of the main paper) with spatio-temporally variant
degradation kernels KD; (b) Flow-guided dynamic upsampling with spatio-temporally variant restoration kernels KR.



REDS4 CLIP 000 CLIP 011 CLIP 015 CLIP 020 Average
Methods PSNR ↑ / SSIM ↑ / tOF ↓ PSNR ↑ / SSIM ↑ / tOF ↓ PSNR ↑ / SSIM ↑ / tOF ↓ PSNR ↑ / SSIM ↑ / tOF ↓ PSNR ↑ / SSIM ↑ / tOF ↓

Single Image Super-Resolution + Deblurring
Bicubic + Restormer [73] 24.16 / 0.6488 / 0.95 22.92 / 0.6341 / 7.17 26.14 / 0.7565 / 4.73 21.24 / 0.6086 / 8.12 23.62 / 0.6620 / 5.24
Bicubic + FFTformer [41] 24.17 / 0.6432 / 0.90 22.90 / 0.6328 / 7.06 26.55 / 0.7669 / 4.85 21.27 / 0.6082 / 8.09 23.72 / 0.6628 / 5.23

Bicubic + RVRT [48] 24.21 / 0.6486 / 0.84 23.53 / 0.6818 / 4.87 26.58 / 0.7725 / 4.28 21.96 / 0.6641 / 5.90 24.07 / 0.6918 / 3.97
Bicubic + GShiftNet [43] 24.19 / 0.6468 / 0.80 23.36 / 0.6659 / 5.36 26.59 / 0.7742 / 4.31 21.76 / 0.6451 / 6.25 23.98 / 0.6830 / 4.18

SwinIR [46] + Restormer [73] 25.22 / 0.7136 / 0.68 23.17 / 0.6566 / 6.65 27.49 / 0.8142 / 4.18 21.47 / 0.6316 / 7.78 24.33 / 0.7040 / 4.82
SwinIR [46] [46] + FFTformer [41] 25.04 / 0.7096 / 0.66 23.06 / 0.6629 / 5.86 27.22 / 0.8183 / 3.94 21.40 / 0.6329 / 7.40 24.18 / 0.7059 / 4.47

SwinIR [46] + RVRT [48] 25.32 / 0.7261 / 0.58 23.97 / 0.7317 / 4.00 27.36 / 0.8232 / 3.64 22.11 / 0.6995 / 5.61 24.69 / 0.7451 / 3.46
SwinIR [46] + GShiftNet [43] 25.30 / 0.7221 / 0.58 23.59 / 0.6964 / 4.78 27.38 / 0.8219 / 3.67 21.81 / 0.6687 / 5.94 24.52 / 0.7273 / 3.74

HAT [10] + Restormer [73] 25.21 / 0.7151 / 0.68 23.18 / 0.6579 / 6.55 27.57 / 0.8184 / 4.07 21.48 / 0.6323 / 7.74 24.36 / 0.7059 / 4.76
HAT [10] + FFTformer [41] 25.11 / 0.7136 / 0.66 23.12 / 0.6670 / 5.75 27.26 / 0.8208 / 3.85 21.42 / 0.6348 / 7.35 24.22 / 0.7091 / 4.40

HAT [10] + RVRT [48] 25.39 / 0.7299 / 0.57 24.03 / 0.7354 / 3.93 27.48 / 0.8289 / 3.53 22.15 / 0.7022 / 5.54 24.76 / 0.7491 / 3.39
HAT [10] + GShiftNet [43] 25.36 / 0.7256 / 0.57 23.63 / 0.6989 / 4.73 27.48 / 0.8270 / 3.60 21.83 / 0.6699 / 5.91 24.58 / 0.7304 / 3.70

Video Super-Resolution + Deblurring
BasicVSR++ [9] + Restormer [73] 26.35 / 0.7765 / 0.48 23.08 / 0.6527 / 6.83 28.07 / 0.8421 / 3.78 21.47 / 0.6325 / 7.83 24.74 / 0.7260 / 4.73
BasicVSR++ [9] + FFTformer [41] 26.20 / 0.7746 / 0.45 22.84 / 0.6479 / 6.34 27.46 / 0.8386 / 3.65 21.34 / 0.6286 / 7.62 24.46 / 0.7224 / 4.52

BasicVSR++ [9] + RVRT [48] 26.35 / 0.7897 / 0.40 23.70 / 0.7165 / 4.36 27.74 / 0.8438 / 3.32 21.98 / 0.6905 / 5.88 24.92 / 0.7604 / 3.49
BasicVSR++ [9] + GShiftNet [43] 26.30 / 0.7862 / 0.36 23.33 / 0.6824 / 4.97 27.65 / 0.8360 / 3.38 21.69 / 0.6627 / 6.03 24.74 / 0.7418 / 3.69

FTVSR [56] + Restormer [73] 26.31 / 0.7724 / 0.50 23.10 / 0.6533 / 6.81 27.92 / 0.8364 / 3.91 21.48 / 0.6329 / 7.83 24.70 / 0.7238 / 4.76
FTVSR [56] + FFTformer [41] 26.07 / 0.7679 / 0.51 22.83 / 0.6489 / 6.27 27.30 / 0.8328 / 3.76 21.32 / 0.6282 / 7.61 24.38 / 0.7195 / 4.54

FTVSR [56] + RVRT [48] 26.30 / 0.7863 / 0.42 23.73 / 0.7177 / 4.37 27.61 / 0.8392 / 3.40 22.02 / 0.6923 / 5.87 24.92 / 0.7589 / 3.52
FTVSR [56] + GShiftNet [43] 26.26 / 0.7827 / 0.38 23.36 / 0.6845 / 4.95 27.52 / 0.8329 / 3.45 21.75 / 0.6658 / 5.99 24.72 / 0.7415 / 3.69

Single Image Deblurring + Super-Resolution
Restormer [73] + Bicubic 24.04 / 0.6404 / 0.93 22.96 / 0.6359 / 6.77 26.47 / 0.7613 / 5.00 21.44 / 0.6185 / 7.37 23.73 / 0.6640 / 5.02

Restormer [73] + SwinIR [46] 24.96 / 0.7135 / 0.68 23.21 / 0.6647 / 6.14 27.43 / 0.8117 / 4.18 21.58 / 0.6442 / 6.97 24.30 / 0.7085 / 4.49
Restormer [73] + HAT [10] 25.03 / 0.7162 / 0.67 23.22 / 0.6650 / 6.12 27.50 / 0.8142 / 4.12 21.58 / 0.6444 / 6.95 24.33 / 0.7100 / 4.47

Restormer [73] + BasicVSR++ [9] 25.80 / 0.7740 / 0.49 23.19 / 0.6638 / 6.12 27.78 / 0.8268 / 3.88 21.59 / 0.6472 / 6.93 24.59 / 0.7280 / 4.36
Restormer [73] + FTVSR [56] 25.79 / 0.7709 / 0.50 23.22 / 0.6651 / 6.19 27.71 / 0.8260 / 3.91 21.61 / 0.6481 / 6.98 24.58 / 0.7275 / 4.40

FFTformer [41] + Bicubic 23.98 / 0.6416 / 0.87 22.82 / 0.6382 / 6.50 26.38 / 0.7610 / 4.91 21.42 / 0.6207 / 7.22 23.65 / 0.6654 / 4.88
FFTformer [41] + SwinIR [46] 24.83 / 0.7149 / 0.67 23.01 / 0.6657 / 5.93 27.28 / 0.8115 / 4.17 21.53 / 0.6462 / 6.82 24.16 / 0.7096 / 4.40

FFTformer [41] + HAT [10] 24.90 / 0.7177 / 0.66 23.03 / 0.6661 / 5.90 27.37 / 0.8141 / 4.14 21.53 / 0.6464 / 6.81 24.21 / 0.7111 / 4.38
FFTformer [41] + BasicVSR++ [9] 25.72 / 0.7774 / 0.48 23.00 / 0.6654 / 5.92 27.61 / 0.8273 / 3.89 21.54 / 0.6492 / 6.78 24.47 / 0.7298 / 4.27

FFTformer [41] + FTVSR [56] 25.73 / 0.7742 / 0.52 23.03 / 0.6673 / 6.00 27.47 / 0.8257 / 3.95 21.56 / 0.6505 / 6.85 24.45 / 0.7294 / 4.33
Video Deblurring + Super-Resolution

RVRT [48] + Bicubic 24.03 / 0.6356 / 0.98 23.33 / 0.6540 / 5.58 26.51 / 0.7645 / 4.57 21.91 / 0.6436 / 5.94 23.95 / 0.6744 / 4.27
RVRT [48] + SwinIR [46] 25.11 / 0.7092 / 0.71 23.57 / 0.6826 / 5.03 27.33 / 0.8121 / 3.80 22.04 / 0.6688 / 5.53 24.51 / 0.7182 / 3.77

RVRT [48] + HAT [10] 25.15 / 0.7114 / 0.70 23.58 / 0.6827 / 5.01 27.40 / 0.8143 / 3.75 22.04 / 0.6688 / 5.52 24.54 / 0.7193 / 3.75
RVRT [48] + BasicVSR++ [9] 25.96 / 0.7650 / 0.58 23.56 / 0.6832 / 5.01 27.56 / 0.8237 / 3.54 22.06 / 0.6725 / 5.49 24.79 / 0.7361 / 3.66

RVRT [48] + FTVSR [56] 25.94 / 0.7618 / 0.60 23.70 / 0.6964 / 5.34 27.49 / 0.8229 / 3.63 22.17 / 0.6848 / 6.02 24.83 / 0.7415 / 3.90
GShiftNet [43] + Bicubic 21.37 / 0.5874 / 1.28 23.20 / 0.6488 / 5.80 26.54 / 0.7650 / 4.61 21.72 / 0.6339 / 6.27 23.21 / 0.6588 / 4.49

GShiftNet [43] + SwinIR [46] 20.94 / 0.6163 / 1.07 23.34 / 0.6755 / 5.25 27.39 / 0.8140 / 3.85 21.80 / 0.6585 / 5.90 23.37 / 0.6911 / 4.02
GShiftNet [43] + HAT [10] 20.99 / 0.6182 / 1.06 23.36 / 0.6757 / 5.23 27.48 / 0.8168 / 3.80 21.80 / 0.6587 / 5.89 23.41 / 0.6924 / 4.00

GShiftNet [43] + BasicVSR++ [9] 20.98 / 0.6432 / 0.88 23.35 / 0.6766 / 5.21 27.66 / 0.8278 / 3.53 21.82 / 0.6621 / 5.84 23.45 / 0.7024 / 3.87
GShiftNet [43] + FTVSR [56] 21.05 / 0.6439 / 0.90 23.42 / 0.6814 / 5.41 27.56 / 0.8267 / 3.57 21.87 / 0.6657 / 6.03 23.47 / 0.7044 / 3.98

Joint Video Super-Resolution and Deblurring
HOFFR [18] - / - / - - / - / - - / - / - - / - / - 27.24 / 0.7870 / -

Restormer∗ [73] 26.51 / 0.7551 / 0.47 27.09 / 0.7695 / 3.53 30.03 / 0.8579 / 2.82 25.52 / 0.7573 / 4.04 27.29 / 0.7850 / 2.72
GShiftNet∗ [43] 24.66 / 0.6730 / 0.93 25.66 / 0.7190 / 3.47 28.05 / 0.7995 / 3.50 24.69 / 0.7187 / 3.93 25.77 / 0.7275 / 2.96

BasicVSR++∗ [9] 25.90 / 0.7234 / 0.57 27.07 / 0.7699 / 3.36 29.67 / 0.8475 / 3.01 25.58 / 0.7601 / 3.86 27.06 / 0.7752 / 2.70
RVRT∗ [48] 26.84 / 0.7764 / 0.38 27.76 / 0.7903 / 2.95 30.66 / 0.8694 / 2.60 25.93 / 0.7740 / 3.65 27.80 / 0.8025 / 2.40

FMA-Nets (Ours) 27.08 / 0.7852 / 0.33 28.73 / 0.8164 / 2.46 30.98 / 0.8745 / 2.42 27.03 / 0.8089 / 3.10 28.46 / 0.8212 / 2.08
FMA-Net (Ours) 27.19 / 0.7904 / 0.32 29.38 / 0.8308 / 2.19 31.36 / 0.8814 / 2.37 27.51 / 0.8232 / 2.79 28.83 / 0.8315 / 1.92

Table 9. Quantitative comparison on REDS4 for ×4 VSRDB. All results are calculated on the RGB channel. Red and blue colors indicate
the best and second-best performance, respectively. The superscript ∗ indicates that the model is retrained on the REDS [52] training
dataset for VSRDB.



Frame 025, Clip 000

Restormer* [73] GShiftNet* [43]

BasicVSR++* [9]

RVRT* [48]

FMA-Net (Ours) GT

Frame 009, Clip 011

Restormer* [73] GShiftNet* [43]

BasicVSR++* [9]

RVRT* [48]

FMA-Net (Ours) GT

Frame 021, Clip 011

Restormer* [73] GShiftNet* [43]

BasicVSR++* [9]

RVRT* [48]

FMA-Net (Ours) GT

Frame 068, Clip 011

Restormer* [73] GShiftNet* [43]

BasicVSR++* [9]

RVRT* [48]

FMA-Net (Ours) GT

Frame 077, Clip 011

Restormer* [73] GShiftNet* [43]

BasicVSR++* [9]

RVRT* [48]

FMA-Net (Ours) GT

Figure 12. Visual results of different methods on REDS4 [52]. Best viewed in zoom.
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Figure 13. Visual results of different methods on REDS4 [52]. Best viewed in zoom.
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Figure 14. Visual results of different methods on GoPro [52] test set. Best viewed in zoom.



Restormer* [72] GShiftNet* [42]

BasicVSR++* [8]

RVRT* [47]

FMA-Net (Ours) GTBlurry LR frame

Figure 15. Qualitative comparison for the extreme scene including object rotation.
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