
 

 

A. Training and Validation 

A.1 Training Details  
 For training, we prepare paired (slice stack, motion stack) 
and (splatted volume, ground truth volume) training data by 
applying a random isotropic zoom (±26 voxels), horizontal 
flip, rotation (Euler angles ±20º for adult brains and ±180º 
for fetal) and translation (±13 voxels) to the registered 2563 
reference volume (1mm3 acquisition, Talairach for adult and 
0.8mm3 FeTA reconstruction, CRL for fetal) to first simulate 
the diversity in scanned subjects and various poses that they 
may be scanned under. To simulate slicing, we apply random 
rotations (Euler angles ±20º) and translations (±26 voxels) 
that vary smoothly across slices by randomly sampling 32 to 
64 rotations and translations from the ranges shown above 
and smoothly interpolating them using cubic B splines. We 
interleave the two halves of motion trajectories to simulate 
two-shot sequences typically used in 2D MRI acquisitions. 
 Slice acquisition is simulated by blurring the slices using 
a boxcar PSF (four voxels wide) along the slicing direction 
(sagittal, axial or coronal for adult brains, and sagittal in the 
case of fetal, where the ±180º Euler angles mean that slices 
are acquired along random directions anyway) and sampling 
every fourth slice along the same axis. Slice intensities are 
manipulated by applying Gaussian noise with noise standard 
deviation 𝜎 = 0.01 and gamma augmentation with exponent 
𝛾 ∈ [0.9,1].  Finally, the acquired slices are replicated along 
the slicing direction by a factor of four again so that the slice 
stacks have isotropic in- and through-plane resolutions. We 
subsample the slice stacks by a factor of two (i.e., to 2mm3 
or 1.6mm3) to train the slice motion prediction network. No 
subsampling is performed when training the interpolator. 
 We train our slice motion and interpolation networks for 
256,000 steps using ADAM, with an initial learning rate of 
10−4, which is reduced to 0 with poly scheduling (exponent 
of 0.9), weight decay of 0 and momentum of 0.90. We mask 
out background voxels when computing the training loss. In 
the case of fetal SVR, we over-sample the FeTA portion of 
the training data fivefold, and the CRL portion tenfold. We 
simply pick the model of the last epoch for model selection 
but still monitor validation metrics for potential overfitting. 

A.2 Validation Metrics 
 Similar to our training loss (9), all our validation metrics 
compensate for any global rigid motion offset may that exist 
between predicted and true slice motion; see (9). In addition 
to the MSE 𝓛MSE(𝐮, 𝐲) = (1 𝑁⁄ )‖𝐮 − 𝐲‖𝐹

2  of the predicted 
slice motion 𝐮 ∈ ℝ𝑁×3 w.r.t. true motion 𝐲 ∈ ℝ𝑁×3, we use 
the average end-point error (EPE) metric [33], defined as 

 𝓛EPE(𝐮, 𝐲) = (1 𝑁⁄ )‖𝐮 − 𝐲‖2,1, (A1) 

that is, the mean Euclidean distance between the end-points 
of two slice motion fields (both metrics shown here without 

rigid compensation for clarity). In previous work [20, 25], a 
similar metric is proposed to measure the average Euclidean 
distance between the predicted and true slice positions at the 
anchor points of the slices (anchor point error, APE): 

 𝓛APE(𝐮, 𝐲) = (1 3⁄ )‖𝐮{0,1,2} − 𝐲{0,1,2}‖2,1, (A2) 

in which 𝐮{0,1,2} and 𝐲{0,1,2} denote the position vectors at 
the anchor points of the grids that define the voxel locations 
of the respective slices in 3D space. Typically, anchor points 
are assumed to be at the center, bottom left and bottom right 
corners of a given slice. Assuming that slices are undergoing 
rigid motion, the APE is equivalent to the EPE averaged on 
the right-triangular region formed by the three anchor points 
on the reference slice. 

A.3 SVRnet Model Implementation 
 For reproducibility, we port the original TensorFlow 1.13 
implementation of SVRnet [20] with an Inception backbone 
to PyTorch 1.13, where we use a ResNet-34 backbone and a 
prediction head consisting of a 512 × 9 dense layer, which 
predicts the slice position vectors at three anchor points. We 
find that 2D batch normalization based on collected statistics 
does not perform well at test time and opt to normalize each 
example based on the statistics of each slice stack. We use 
subsampled slices of size 128 × 128 pixels and interpolate 
the predicted anchor point position vectors to a linear motion 
field and subtract the slice voxel coordinates to output slice 
motion. We train this implementation of SVRnet using the 
regular MSE loss on output slice motion field.  We initialize 
the model with the torchvision ImageNet1K_v1 weights. 

A.4 SVoRT Model Configuration 
 For comparison with SVoRT (v2), we use model weights 
provided by Xu et al. [25] on their repository, configure the 
model to use one slice stack with a slice gap of 3.2mm, and 
optimize the reconstruction PSF (slice thickness of 1.6mm) 
for validation accuracy (i.e., average motion end-point error) 
on the 12 FeTA validation subjects using an exponential grid 
search. We fixed the stack positional encoding of SVoRT to 
0 (rather than a random integer) for reproducible results. We 
convert SVoRT’s transform output to dense motion fields to 
compute the motion MSE and EPE for validation accuracy. 

B. Additional SVR Results 

 Here, we provide additional SVR results on our adult and 
fetal datasets. Figure B1 visualizes reconstructions of adult 
brain MR volumes for three of our validation subjects, with 
all three orthogonal views shown for completeness. Figure 
B2 similarly visualizes fetal reconstructions. We include the 
corresponding SVoRTv2 results for comparison, noting that 
SVRnet reconstructions are garbled in many cases (see first 
row of Figure 9) and are less meaningful to compare against. 
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       (a) Slice Stack (b) Splat (Ours, True Motion) (c) Interpolated (Ours, True Motion) (d) True Volume 
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 (a) Slice Stack (b) Splat (Ours, True Motion) (c) Interpolated (Ours, True Motion) (d) True Volume 

 

      

       
 

 Coronal Acquisition EPE: 2.00mm EPE: 0.00mm  

    

   

 Sagittal Acquisition EPE: 1.70mm EPE: 0.00mm   
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       (a) Slice Stack (b) Splat (Ours, True Motion) (c) Interpolated (Ours, True Motion) (d) True Volume 
Figure B1: SVR of adult brain scans. We visualize our SVR results on slice stacks synthesized using random slice motion (a). Using the 
predicted motion stack, we splat slice data to reconstruct the underlying 3D volume (b). We interpolate the missing intensities (holes) in our 
reconstruction (c). We additionally visualize in (b) and (c) splat and interpolated results obtained when the true motion stack is used. 
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Fe
TA

 S
ub

 0
36

 

      

 

      

 (a) Slice Stack (b) Splat (SVoRTv2, Ours) 
(c) SVoRTv2 

(c) Interp (SVoRTv2, Ours) 
(d) Interp (Ours) 

(d) True Volume 

 

      

Fe
TA

 S
ub

 0
44

 

      

 

      

 (a) Slice Stack (b) Splat (SVoRTv2, Ours) 
(c) SVoRTv2 

(c) Interp (SVoRTv2, Ours) 
(d) Interp (Ours) 

(d) True Volume 
Figure B2: Single-stack fetal SVR. We visualize the SVR results on validation subjects from the FeTA dataset [73]. Our results closely 
resemble the ground truth volumes while SVoRTv2 reconstructions (with our interpolation applied) exhibit spatial distortion from inaccurate 
slice alignment. 
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