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In this supplementary material, we provide additional
details and results that are not included in the main paper
due to the space limit. The attached video includes a brief
introduction and interesting qualitative results of Paint-it.
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A. Details of Paint-it

A.1. DC-PBR: Network Design

The main contribution of our work is the proposed DC-PBR
parameterization for optimizing the physically-based render-
ing (PBR) texture maps. Instead of pixel-based parameteriza-
tion of the PBR texture maps, we introduce the fixed random
noise input z ∼ N (0, I) ∈ RH×W×3, and a randomly ini-
tialized U-Net with skip connections, Tθ. We obtain the PBR
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texture map [Kd
θ,K

rm
θ ,Kn

θ] = Tθ(z) ∈ RH×W×(3+2+3), for
every iteration of the synthesis optimization.

Our design choice of DC-PBR is inspired by the Deep
Image Prior [22], and we extended it to re-parameterize the
PBR texture maps for the text-driven texture map synthesis
task. We use an encoder-decoder (“hourglass”) architecture
with skip connections between encoder and decoder features
for our neural re-parameterization, DC-PBR Tθ. For the
network hyperparameters, we used the default architecture
of the Deep Image Prior, i.e., five levels of downsampling
and upsampling layers for the encoder and decoder. We
encourage readers to refer to the details in Fig. 21 of Deep
Image Prior. We empirically set the learning rate as 5 · 10−4

and the total iteration for PBR texture synthesis as 1000.

A.2. Details of SDS Loss

Recall that we optimize the DC-PBR given the text with the
Score-Distillation Sampling (SDS).

SDS Loss for Multi-view Mesh Images. We adopt some
engineering to obtain high-fidelity and multi-view consis-
tent PBR texture maps. When computing the SDS loss, we
need the rendered image of the textured mesh. We randomly
sample camera poses in multi-view and render N view im-
ages. We sample the elevation angle as φelev ∼ U(−π

3 ,
π
3 ),

and the azimuth angle as φazim ∼ U(0, 2π). We set N = 4
for most cases. When optimizing DC-PBR for humans and
animals, we increase the generation quality of the face re-
gions by additionally rendering the face-focused images. We
translate the mesh so that the head can be the center of the
world coordinate and render it with φelev ∼ U(−π

6 ,
π
3 ) and

φazim ∼ U(0, 2π). For human and animal cases, we use a to-
tal N = 8 views for computing SDS loss, where four views
are for the full body, and the others are for face regions. We
also use the directional text prompt engineering as in prior
arts [4, 16] to mitigate the “Janus problem”.

When computing the SDS loss, at each iteration, we syn-
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Figure S1. (For SDS analysis) Textured mesh image rendered from
adjacent camera views −2◦ < φelev < 2◦ and −2◦ < φazim < 2◦.
The images are slightly different but look almost identical.

chronize the noise ϵ and the noising timestep t for multi-view
rendered images, i.e., we randomly sample a single ϵ and
t for each synthesis iteration and add the same amount of
noise to the multi-view mesh images. Finally, we sample the
noising timestep t, from the distribution U(tmin, tmax). We
start by [tmin, tmax] = [0.2, 0.98], and linearly narrows down
the distribution so that it become [tmin, tmax] = [0.3, 0.5] by
the end. We empirically set the ranges for tmin and tmax.

Why is SDS Loss a Noisy Signal?. In the main paper, we
denote that the SDS loss is a noisy signal. By noisy, we refer
to the incoherent nature of the SDS loss. From Sec. 3.1 and
Eq. 1 in the main paper, we notice the SDS loss is dependent
on the randomly sampled Gaussian noise ϵ ∼ N (0, I) and
the noising timestep t ∼ U(tmin, tmax). We sample ϵ and t
for every iteration of the PBR texture map synthesis; thus,
the SDS loss is highly likely to give incoherent direction for
updating the DC-PBR Tθ. Moreover, as aforementioned, we
use multi-view rendered images. Multi-view images contain
different visible mesh parts, potentially providing incoherent
update directions for Tθ.

To show the incoherent SDS gradient, we design a toy
example. Given a mesh and a text input, we render the mesh
in N adjacent views, i.e., we sample elevation and azimuth
in the range −2◦ < φelev < 2◦ and −2◦ < φazim < 2◦.
Since the camera views are closely distributed, the rendered
mesh images would look almost identical (see Fig. S1).

We investigated the backward gradients ∇LSDS applied
on the diffuse map Kd

θ, computed from each view, with the
identical text prompt and ϵ and t. We obtain a flattened,
stacked gradient matrix from per-view SDS loss gradients
on the diffuse map. Formally, we obtain the gradient ma-
trix G ∈ RN×F , where N denotes the number of rendered
views, and F denotes the flattened dimension of the gradi-
ent. Even though we compute the SDS loss with the same
text prompt, same ϵ and t, and the almost identical rendered
images indistinguishable in eyes, we observe that the gra-
dient matrix G is in high rank. We first obtain the singular
values of the gradient matrix G using the Singular Value
Decomposition (SVD) and investigate the ratio of all the
singular values with the smallest singular value. From a toy
example, where N = 5, we obtain the singular value ratio
as [2.1868, 1.7937, 1.7838, 1.6689, 1.0000], i.e., the highest
and lowest singular values do not deviate too much in terms
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(a) FFT of texture map (b) Frequency bands
Figure S2. (a) Visualization of the FFT image of the diffuse map.
(b) Visualization of the pre-defined non-overlapping frequency
bands. Center: low frequency, Outer: high frequency.

of the scale, showing G is high rank. In other words, the
SDS loss, computed with a pre-trained text-to-image dif-
fusion model, provides incoherent guidance from multiple
views and guides the optimization in incoherent directions.

We claim the SDS loss is a noisy signal from this obser-
vation. In Sec. 4.2, we empirically show our DC-PBR filters
out the high-frequency noisy signal by inherently schedul-
ing the optimization curriculum. Thus, DC-PBR is effective
when combined with the noisy SDS loss.

A.3. Details of Frequency-based Analysis

We plot the energy-iteration plot in our frequency-based
analysis of the proposed DC-PBR (Fig. 4 in the main paper).
We first performed the Fast Fourier Transform (FFT) of the
diffuse texture map obtained in each iteration. See Fig. S2a
for the FFT result. Then, we define five non-overlapping
frequency bands, depending on the radius from the center of
the FFT image, as in Fig. S2b. Note that the ranges of the
frequency bands are fixed during the optimization. Finally,
we compute the energy of each frequency band by summing
all the frequency response magnitudes (either absolute value
or square works) in each frequency band.

In Fig. 4-left, the optimization starts from a monotonic
gray image, which has high zero-frequency energies, i.e., DC
component. However, note that we visualize each frequency
band’s ‘average’ energy. DC component occupies only a tiny
area (≪ 1%) in the lowest frequency band; thus, the pixel
brightness hardly affects the band’s energy.

During Paint-it optimization, our DC-PBR representa-
tion automatically schedules the curriculum to learn low
frequency first, then mid frequency, and filters out the high-
est frequency, i.e., noise.

A.4. Details of User Study

We conducted a user study to assess the realism of the synthe-
sized PBR texture maps. We showed ten untextured meshes
from the Objaverse [6] dataset and showed five different
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Figure S3. The users were asked to rate the realism of the rendered
mesh images, textured with five different methods. The order of
the methods was randomly shuffled for each question.

Figure S4. Feature grid+MLP (baseline) vs. DC-PBR (ours)

results obtained from the methods: Latent-Paint [13], Fanta-
sia3D [4], Text2Tex [3], TEXTure [18], and Paint-it (ours).
We asked 30 users with engineering/non-engineering back-
grounds to rate the realism of the rendered images in the
score range 1 to 5, i.e., 1: very unrealistic, 2: unrealistic, 3:
neutral, 4: realistic, and 5: very realistic. The order of the
methods was randomly shuffled for fairness. The interface
of the user study is shown in Fig. S3.

A.5. Details & Discussion about Optimization Time

The optimization time for synthesizing PBR texture maps
takes about 15 min. for general object meshes in Obja-
verse [6]. For more complex cases, such as 3D humans or
animals, we additionally use face-focused mesh renderings;
thus, it takes about 30 min. to complete. We optimized
both the baseline (Eq. (4) in the main paper, pixel optimiza-
tion) and our DC-PBR until convergence, and there’s no
significant time difference. Instead, DC-PBR helps the opti-
mization with noisy SDS loss find a better solution than the
vanilla pixel optimization. We use a single NVIDIA RTX
A6000 GPU for the optimization.

Extending Paint-it to large-scale 3D scenes would be
an interesting future direction. However, Paint-it’s PBR
texture generation for large-scale scenes would take a longer
optimization time. As suggested in FPRF [10], we may try

semantic feature distillation to accelerate the optimization
when stylizing large-scale 3D scenes using SDS.

B. Additional Experiment

B.1. More Baseline for PBR Representation

For a PBR representation baseline, other than direct pixel
optimization (Eq. (4) in the main paper), we implement a
multi-resolution hash encoding of grid features and subse-
quent MLP [14] to model the disentangled PBR texture maps.
In Fig. S4, our DC-PBR representation yields smoother and
more vivid texture results than the new baseline. In Table S1,
our DC-PBR obtains a better FID score than other PBR
representation baselines (Pixel optim., & Feat. grid+MLP).
We postulate that the SDS gradients only propagate to local
hash grids in the new baseline, lacking non-local texture
smoothness, as supported in [12]. On the other hand, the spa-
tial CNN kernels of our DC-PBR are beneficial in naturally
imposing texture smoothness.

B.2. Effects of DC-PBR Design Choice

In this section, we investigate the effect of our DC-PBR
design choice. Specifically, we study the effect of our U-Net
with skip connections in synthesizing the PBR texture maps.

As discussed in the main paper and Sec. A.1, we use a
randomly initialized U-Net with skip connections, shortly,
U-Net+skip. Deep Image Prior [22] used U-Net+skip and
claimed skip connections inherently promote self-similarity
across multi-scales, which is beneficial for inverse problems.
We wanted to investigate how the skip connections affect
the DC-PBR optimization with SDS loss. Thus, we conduct
the same experiment as in Sec. 4 of the main paper, but with
U-Net, without (w/o) skip connections.

Fitting behavior. Following the experiment in Sec. 4.1, we
fit a randomly initialized U-Net w/o skip connections given
a ground-truth texture map. In Fig. S5b, the energy-iteration
plot shows that parameterizing a texture map with U-Net
w/o skip connection fails to fit high frequency.

DC-PBR synthesis behavior. Similarly, for our task, i.e.,
text-driven DC-PBR optimization, U-Net w/o skip connec-
tion fails to increase the mid-to-high frequency band (purple
line), resulting in blurry texture maps. In contrast, our DC-
PBR, parameterized in U-Net+skip, successfully increases
the mid-to-high frequency band, synthesizing fine-grained
texture maps. We conclude that the skip connections are
in charge of synthesizing fine-grained, high-frequency de-
tails of texture maps. This observation aligns with the Deep
Image Prior’s claim, where skip connections benefit the
inverse problems with multi-scale feature awareness. We
additionally showed the frequency level behavior of the skip
connection through the experiments (see Fig. S6).
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Figure S5. Effect of skip connection: Texture map fitting. When fitting a texture map with different parameterizations, U-Net without skip
connections fails to fit the highest frequency band. This hints that the skip connections are responsible for representing fine-grained details.

Figure S6. Effect of skip connection: Text-driven texture synthesis. When synthesizing PBR texture maps with different parameterizations,
U-Net without skip connections cannot increase the mid-to-high frequency band (purple). Proposed DC-PBR with U-Net and skip connections
can synthesize fine-grained details in texture maps, resulting in high-fidelity synthesis results.

Pixel optim. Only Kd Feat. grid+MLP DC-PBR (Ours)

FID (↓) 216.6 59.39 55.98 34.46

Table S1. FID for ablation study

C. Additional Results
C.1. More Quantitative Comparison

In Tab. S1, we report FID scores for the ablation study (in
Sec. 5.3 in the main paper). We used 410 meshes from
Objaverse to get the real sample set and added 50 meshes for
the generated sample set. The results support that our full
DC-PBR enhances the realism of the generated texture.

C.2. More Qualitative Results

We provide more qualitative results of our Paint-it. Given un-
textured meshes from Objaverse [6] and RenderPeople [1],
we obtain the text prompts from 1) manually writing the
requirements, e.g., a Spiderman lego minifigure, or 2) gen-
erating an automatic text caption using multi-modal large-

language models, e.g., GPT-4. Then, we conduct Paint-it
optimization to synthesize PBR texture maps and render the
textured meshes (see Fig. S7 and Fig. S8).

C.3. More Comparison Results

In Figs. S9 and S10, we provide more qualitative re-
sults that compare Paint-it and recent competing meth-
ods [3, 4, 13, 18]. As in Fig. 6 of the main paper, we synthe-
size texture maps using each method for the same untextured
meshes and text prompts. Overall, Paint-it synthesizes much
realistic and vivid texture on the meshes, thanks to the PBR
texture representation and texture smoothness induced by
our proposed DC-PBR. Note that Fantasia3D [4] also synthe-
sizes PBR materials, but in a per-point independent manner;
thus, it lacks texture smoothness and yields substantial jit-
terings. Moreover, given an untextured mesh, Fantasia3D
converts the mesh into a signed distance function (SDF)
representation, DMTet [19]. Such auxiliary re-meshing opti-
mization leads to severe geometric quality degradation, e.g.,
floating artifacts on a toy bicycle example, in Fig. S9.
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Figure S7. Qualitative results of Paint-it: Objaverse dataset [6]. Given any untextured mesh from the existing mesh database, Paint-it
synthesizes high-fidelity, locally smooth, and realistic object PBR texture maps.
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wearing 
a sportswear
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wearing 
a red dress

a man 
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a blue suit

a man 
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a green coat

a woman 
wearing 
a black 
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wearing 
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gown

Figure S8. Qualitative results of Paint-it: RenderPeople dataset [1]. Given untextured clothed human meshes, Paint-it synthesizes
high-fidelity, vivid, and multi-view consistent human and cloth PBR textures. We render four different views of the textured mesh.
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Figure S9. Comparison results: Objaverse dataset [6].
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Figure S10. Comparison results: RenderPeople dataset [1].
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Figure S11. Paint-it: Dynamic virtual 3D humans. We synthesize PBR texture maps given text and rigged mesh, e.g., SMPL-X [15], using
Paint-it. Then, we animate the textured 3D humans using sequential pose parameters (can be retrieved [26] or generated [11]).

C.4. Paint-it for Animated Meshes

Paint-it can also synthesize high-quality PBR texture maps
for animatable meshes and generate dynamic 3D assets.
Since Paint-it does not perform a re-meshing process and
preserves the original UV texture coordinates, we can syn-
thesize maps for any rigged meshes, e.g., T-posed human
mesh, and animate with any motion sequences.

In this paper, we used SMPL-X [15]. We first take the
canonical posed SMPL-X mesh and synthesize PBR tex-
ture maps using Paint-it. To animate the textured avatars,
one may use the motion captured mesh sequences of 3D
human bodies [5, 8, 9, 23, 24], faces [7, 27, 28] or even
animals [2, 25]. Generative models for natural body or facial
motions [17, 20, 21] could also be applied for animation. We
may also use the posed meshes and perform advanced aug-
mentations as proposed in CLIP-Actor [26]. We visualize
the synthesized animated meshes in Fig. S11.
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