Supplementary Material

Our theoretical results are proved and further explained in [28]. Additional numerical results and discussion are provided in §A.
We refer to references, equation numbers and sections from the main text. We also follow the same numbering of figures, tables
and equations, and thus start, for example, with Figure 3.

A. Supplementary Details for the Numerical Experiments
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Figure 3. Median (top) and mean (bottom) relative rotation errors (in degrees) obtained by seven algorithms for the 14 datasets of Photo Tourism.
The numerical results are reported in Table 1

We provide additional numerical results and details for our two different types of applications in §A.1 and §A.2.

A.1. Supplementary Details for Fundamental Matrix Estimation

We review some details about data normalization applied for RSR methods in §A.1.1 and the implementation of the RSR methods in
§A.1.2. We provide additional numerical results in §A.1.3, and runtime comparison of only the RSR algorithms (including RANSAC)
in §A.1.4.

A.1.1 Details of Data Normalization

Fundamental matrix estimation requires proper normalization of the input data [ 1 7]. We chose to use a normalization that is very similar
to the commonly used one in the 8-point algorithm; nevertheless, we apply the normalization to the full dataset as our method is applied
to the full dataset. We notice that there are even slightly better normalization techniques, however, to make sure that our competitive
performance is due to the proposed method and not the normalization itself, we use the direct generalization of the standard method.
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Figure 4. Median (top) and mean (bottom) errors of direction vectors (in degrees) obtained by seven algorithms for the 14 datasets of Photo Tourism.
The numerical results are reported in Table 2

Each data point is represented by a column vector of homogeneous coordinates, & € R® = (z1,25,1) ". For the N data points,
x1,...,T N, we form the data matrices X = [x1,...,xx] €R3*N. Let (1,01) and (112,02) be the means and standard deviations of
the first and the second rows of X, respectively. We normalize the points as follows:

z;=Tx;, 1<i<N,
where the normalizing transformation T € R®*3 is given by
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This normalization is applied to any RSR method that uses all data points at once to form the subspace. In our experiments, these
methods include FMS, SEMS, TME and STE. For RANSAC and its variants (which compute subspaces for 8 points at a time)
we use the common normalization [17], which is exactly the normalization above, but applied to the 8 points chosen each time.

A.1.2 Review of the Implementation of the RSR Algorithms

We apply each RSR method (TME, FMS, SEMS and STE) as follows. Given two normalized data matrices (see Section A.1.1)
X = [@1,...,2n] € RPN and X/ = [&],...,&] € R3*N whose columns are normalized feature points for the two given images,
we form the data matrix X = [Z,...,&x] € R?*N with the following columns: &; = vec(&;&, ), i =1,...,N. We apply each
RSR method with d =8 and D =9 (that is, we aim to recover an 8-subspace in R?) to X. We find the orthogonal vector to this
8-dimensional subspace in R? and reshape it in into a 3 by 3 matrix F. In order to report a proper fundamental matrix with rank



2, we replace its lowest singular value with 0. Finally, we obtain the estimated fundamental matrix for the original data (before
normalization) as follows: T " FT”, where T and T’ are the normalization transformations defined in Appendix A.1.1.

A.1.3 Additional Numerical Results for Fundamental Matrix Estimation

We assess the quality of the fundamental matrix estimation by the median and mean errors of relative rotation and direction vectors
directly obtained by the fundamental matrices for the various methods. We recall that these methods include STE (our proposed
algorithm), TME [47, 50], EMS [24], SEMS [24], vanilla RANSAC [10], DEGENSAC [7] and LO-RANSAC [6]. We first explain
how we compute the above errors for any of these methods. _

For any two cameras, ¢ and j, We estimate the fundamental matrix F;; from the correspondence pairs of the images of these
cameras and then extract from ﬁi ; the relative rotation, f{Z 7» and the direction vector (that is, relative translation normalized to have
norm 1) in the coordinates of camera 7, Z, j [17]. We remark that we need to normalize the relative translation to obtain direction
vectors due to the scale ambiguity of the fundamental matrix. For cameras 4 and j, the relative rotation error compares the estimated
relative rotation, R,;, and the ground-truth one (provided by the Photo Tourism database), {R;‘j 1, as follows:

or(Ry; TRy ) -1

-1
eR =Cos
2

Note that the estimated direction vectors, {E]} are defined up to a global orientation and in order to align them with the
ground-truth information (given in the frame of camera ¢) obtained from the Photo Tourism data set, {t;‘j }, we find a rotation matrix

Rjign, Which minimizes ), _, i< ~ It —Ratignti; [|%.. For cameras i and j, the error of direction vectors is
—1 /4% T
erT =COos (|tz‘j 'RaligntijD-

We remark that the estimated direction vector, ¢; ; in the frame of camera 7 implicitly requires estimating both the direction vector
in world’s coordinates and the absolute rotation matrix (up to global scale) that maps from world’s coordinates to the frame of camera
1, and thus seems to be susceptible to large errors.

Location ~RANSAAC D~EGENSﬁkc LE)—RANSAAC ) TME A ) SFMSA ) FMS A ) STE A
€R €R €R €R €R €R €R €R €R €R €R €R €R €R

Alamo 1490 20.02 | 13.13 1838 | 13.12 1835 | 1413 19.50 | 1498 2044 | 1533 21.02 | 11.51 18.65
Ellis Island 517 1417 | 410 1126 | 409 1138 | 1148 2464 | 1322 34.06 | 1427 37.16 | 671 17.57
Madrid Metropolis | 13.61 2252 | 11.57 2128 | 11.56 2148 | 1489 2438 | 17.89 27.58 | 18.05 28.78 | 12.11 21.63
Montreal N.D. 336 7.4 | 269 569 | 266 572 | 455 718 | 656 1022 | 694 1074 | 272 580
NYC Library 816 1434 | 664 1249 | 660 1233 | 876 1397 | 750 1435 | 7.18 1535 | 699 1225
Notre Dame 725 1584 | 499 1167 | 503 11.68 | 1267 19.16 | 940 1736 | 796 1654 | 686 15.11
Piazza del Popolo 359 854 | 300 732 | 302 745 | 451 910 | 959 1598 | 1035 17.69 | 328 821
Piccadilly 730 1711 | 608 1542 | 6.03 1547 | 847 1785 | 1073 2212 | 1195 2429 | 681 16.38
Roman Forum 6.11 1229 | 542 1069 | 541 1068 | 569 1090 | 641 1375 | 646 1405 | 455 9.60
Tower of London 524 1416 | 496 1269 | 494 1264 | 520 1447 | 527 1355 | 577 1502 | 418 12.03
Union Square 482 1189 | 470 1146 | 473 11.60 | 544 1295 | 624 1634 | 682 1891 | 481 1194
Vienna Cathedral 504 1123 | 405 898 | 403 901 | 1144 1829 | 1267 2031 | 13.12 2127 | 705 1375
Yorkminster 631 1397 | 539 11.85 | 533 11.70 | 752 1583 | 855 1693 | 892 1763 | 487 11.75
Gendarmenmarkt | 12.05 29.99 | 10.99 28.89 | 1093 28.99 | 1328 30.05 | 14.77 3148 | 1509 3238 | 11.83 29.10

Table 1. Median and mean relative rotation errors (in degrees) obtained by seven algorithms for the 14 datasets of Poto Tourism. € is the median
relative rotation error, €g is the mean relative rotation error.

Figure 3 is a bar plot presenting the errors of relative rotations (in angles) for the different methods and all 14 datasets and
Figure 4 showcases the errors of direction vectors. For completeness, we record the presented numerical values in Table 1 (for relative
rotations) and Table 2 (for direction vectors). Figure 5 presents the mean Average Accuracy (mAA) [ 18] for rotation with threshold
10°, where as opposed to the former errors which need to be small, higher mAA is better.

We note that STE significantly outperforms FMS and SFMS. STE also outperforms TME, where the only cases where TME
outperforms STE is for direction vector estimation for the NYC Library and Notre Dame datasets. In terms of relative rotation



Location ~RANSAF D~EGENSiAC L~O-RANSAAC ) TME R ) SFMSA ) FMS X ) STE A
€r €r er er €r er €r €r er €r €r €r er €r

Alamo 3220 3697 | 30.09 3546 | 30.11 3557 | 31.36 3649 | 3931 41.74 | 39.85 4198 | 29.25 35.00
Ellis Island 17.16  29.04 | 1198 2443 | 11.90 2445 | 42.62 4242 | 48.11 46.62 | 4779 46.02 | 2548 33.44
Madrid Metropolis | 21.67 29.56 | 19.36  27.83 | 19.09 27.82 | 1923 27.71 | 2322 3047 | 23.18 30.52 | 19.04 2747
Montreal N.D. 7.49 16.51 5.57 13.80 | 5.53 13.75 8.25 16.55 | 3320 38.61 | 34.65 39.51 5.62 14.71
NYC Library 15.17 2487 | 10.77 21.35 | 10.80 21.25 | 2548 32.62 | 48.89 4834 | 48.69 48.02 | 28.09 35.79
Notre Dame 2091 29.83 | 18.82 2840 | 18.75 2830 | 22.61 30.74 | 3538 40.63 | 35.16 40.60 | 31.68 38.12
Piazza del Popolo 758 1735 ] 595 1531 | 593 1534 | 888 1870 | 35.17 3999 | 3198 3796 | 7.16 17.83
Piccadilly 22.89 3099 | 1940 28.58 | 1939 28.58 | 29.58 3536 | 36.83 40.06 | 36.33 39.76 | 2395 31.64
Roman Forum 1324 2396 | 11.07 2152 | 1097 21.30 | 12.51 2286 | 1642 2796 | 1624 2795 | 852 19.13
Tower of London 9.10 20.18 | 7.90 18.30 | 7.95 1820 | 8.88 20.15 | 10.27 22.00 | 877 20.21 5.80 16.46
Union Square 2897 36.03 | 29.23 36.21 | 28.60 3573 | 36.98 4098 | 4297 4476 | 44.02 4571 | 3393 39.60
Vienna Cathedral 13.88 2494 | 1033 21.89 | 1026 21.89 | 3424 3924 | 46.63 48.11 | 4846 49.88 | 29.88 38.53
Yorkminster 14.17 2511 | 1120 22.05 | 11.05 2199 | 1854 28.87 | 2348 3142 | 22.82 31.03 | 9.09 20.17
Gendarmenmarkt 2425 31.51 | 2332 31.11 | 23.03 3096 | 29.82 36.33 | 3570 39.88 | 3544 40.00 | 28.09 35.37

Table 2. Median and mean errors of direction vectors (in degrees) obtained by seven algorithms for the 14 datasets of Photo Tourism. ér is the
corresponding median error, ér is the corresponding mean error.

estimation, STE outperforms vanilla RANSAC, where Ellis Island and Vienna Cathedral are the only two datasets where RANSAC
outperforms STE. In terms of direction vector estimation, STE outperforms vanilla RANSAC in 7 out of the 14 datasets and in
the rest of them vanilla RANSAC outperforms STE. Anyway, the errors of direction vectors are higher than relative rotation errors
because of an issue discussed above and many references do not present these errors. As shown in Figure 5, STE has a higher
mAA(10°) than other RSR methods. Overall, STE is slightly better than RANSAC. Indeed, the averaged mAA(10°) for STE is
0.44 for STE and 0.41 for RANSAC. However, RANSAC has a noticeable higher mAA (10°) for the following 3 datasets: Ellis
Island, Notre Dame and Vienna Cathedral. On the other hand, DEGENSAC and LO-RANSAC are overall slightly better than STE
(with averaged mAA(10°) 0.45 for both methods), but STE has a noticeably higher mAA (10°) for the following 5 datasets: Alamo,
Montreal Notre Dame, Roman Forum, Tower of London and York Minster.
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Figure 5. mAA(10°) obtained by seven algorithms for the 14 datasets of Photo Tourism.

A.14 Runtime Comparison of the RSR components

We compare the elapsed time of the different RSR algorithms, including RANSAC and its variants. Since our current implementation
of STE uses Algorithm 2 with m =5 values of y (y€ {(2i)"*}2_,), it is slower than the basic implementation of Algorithm 1 by
a factor 5 . This choice keeps the similar accuracy of STE with more values of - but reduces the overall runtime.

We compared the runtime of STE (with m =>5) with RANSAC, TME, FMS and SEMS for the 14 Photo Tourism datasets (using
Matlab implementations). These experiments were carried out on an Apple Silicon M2. For each dataset, the average runtime among
all image pairs is reported in Table 3. Overall, the runtimes of STE and RANSAC are somewhat comparable, where the average



over all datasets of the runtime of RANSAC is 22.91 msec and of STE is 21.91 msec. However, the variance of the runtime of
RANSAC is rather large, unlike STE. We further note that TME was the fastest method, however running STE with m =1, instead
of m=35, is slightly faster than TME. FMS and SFMS are slower than TME and overall faster than STE (with m =5) and RANSAC.

Locati | Algorithm Runtimes (ms)
ocations
| STE TME SFMS FMS RANSAC

Alamo 192 4.0 13.7 13.2 11.8
Ellis Island 19.8 4.8 9.8 93 44.6
Madrid Metropolis | 18.6 3.9 93 8.8 113
Montreal N.D. 180 3.6 18.5 17.8 31.6
NYC Library 21.1 4.5 22.5 22.0 51.7
Notre Dame 194 47 18.5 179 15.5
Piazza del Popolo | 19.1 4.2 93 8.8 227
Piccadilly 190 44 8.8 8.2 24.0
Roman Forum 18.1 3.7 16.0 15.5 7.3
Tower of London 176 3.7 154 14.8 4.5
Union Square 190 42 9.6 9.1 10.2
Vienna Cathedral 20.5 45 213 20.8 375
Yorkminster 174 3.6 15.1 14.5 18.2
Gendarmenmarkt 18.7 3.7 8.5 8.0 29.9

Table 3. Elapsed runtimes (in milliseconds) of STE, TME, SEMS, FMS and RANSAC for the 14 datasets of Photo Tourism. The runtimes are
averaged over all image pairs in the dataset.

The runtime of RANSAC mainly depends on the fraction of the outliers. For higher fractions of oultiers, RANSAC significantly
slowed down compared to other methods, showcasing exponential dependence of time on the fraction of outliers. Indeed, if € denotes
the fraction of inliers and d the subspace dimension and one requires 99% confidence, the expected number of iterations of RANSAC
is given as log(1—.99) /log(1—¢&9) [44].

To further investigate the expected correlation of the runtime and the fraction of outliers, we also considered artificial instances,
which we repeatedly generated 100 times. We fixed N = 400 and generated two data matrices X = [z1,...,xx]| € R¥>*Y and
X' =[x),...,.xy] € R**N whose columns contain inlier and outlier feature correspondence pairs in homogenous coordinates as
follows. We varied the fraction of designated outliers, where a fixed fraction of columns of X and X’ (with the same index) were
designated as outliers and the rest as inliers. For generating an outlier correspondence pair, the first two coordinates of ; and
were uniformly sampled in [0,1000] and the third coordinates was set to be 1. For an inlier correspondence pair, we followed the
procedure of [19] to sample (x;,2;) satisfying the epipolar constraint.

Given the generated matrices X and X', we first normalized them according to the procedure described in §A.1.1 and then used
the procedure described in §A.1.2 to estimate the fundamental matrix from these two matrices using any of the RSR methods with
d=8and D =9. The application of RANSAC is also similar to before. The relative rotation was extracted from the estimated
fundamental matrix and its error was computed based on the given ground truth rotation for the inliers, which are clarified when
following the details of generating them in [19]. Using these 100 samples we computed mAA(10°).

Figure 6 reports mAA(10°) and runtimes of STE (with m = 5), TME, SEMS, FMS and RANSAC for different fractions of
outliers. The maximum number of iteration of RANSAC was set to be 1000. We note that STE (with m =15) achieved the highest
mAA(10°) when the fraction of outliers was at most 50% and in this case the mAA(10°) values of FMS are slightly below those
of STE. On the other hand, when the fraction of outliers is at least 60% the mAA(10°) values of STE are higher than STE, but
they indicate low accuracy. The values of RANSAC, SEMS and TME are below the ones of STE. Moreover, the mAA(10°) values
of TME are rather low and indicate low accuracy.

Regarding runtime, we first note that FMS, SFMS and TME have fixed times, since the number of data points, IV, is fixed.
Moreover, TME is faster then FMS and SFMS whose time is comparable. On the other hand, STE has a smaller run time for low
fraction of outliers, since it converges faster then. Furthermore, the runtime of STE stabilizes when the fraction of outliers is large
and it is slightly above FMS and SFMS. RANSAC is relatively fast for a small fraction of outliers, but it is much slower than all
other method when the fraction of outliers is at least 50%.

The above mentioned formula of expected number of iterations implies that RANSAC can easily fail with large d. In the setting of 3-
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Figure 6. mAA(10°) (left) and runtime (right, in seconds) of five algorithms for the synthetic feature points data. The z-axis indicates the fraction
of the outliers, where the total number of points is fixed as 400.

view homography estimation, D =27 and d =26. We thus tried the standard haystack model with D =27, d =26, N =400 and varied
fractions of outliers. To measure error, we use the angle between L., the inlier subspace of the haystack model, and L, the estimated
subspace. Figure 7 compares the errors and runtimes of the five algorithms for different fractions of outliers. We note that STE has the
lowest error, but they notably increase for fraction of outliers larger than 50%. The errors of SFMS and TME are only slightly above
than those of STE. RANSAC performed poorly, even for very small fractions of outliers and FMS is even worse than RANSAC.

We note that the runtimes of the RSR methods behave similarly to the ones in Figure 6. In each one of the experiments RANSAC
needed the maximal number of iterations, which was set as 1000, and obtained the same runtime, which is significantly larger than
the other runtimes.
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Figure 7. Angular error (left, in radius) and runtime (right, in seconds) of five algorithms for the generalized haystack synthetic data. The error
is angle between L. and the estimated subspace L recovered by the algorithm. The z-axis is the fraction of outliers.

A.2. Additional Numerical Results for Initial Camera Removal for SfM

We use all 14 datasets of the Photo Tourism database. As mentioned in the main text, scale factors are first obtained by the LUD
algorithm. Many of the blocks E;; are absent when there are no matching features between images 4 and j. On the other hand,
the geometric relationship between cameras ¢ and j still exists and the ground-truth essential matrix is thus well defined. In such
scenarios, a common strategy is to assign to E;; a zero matrix [39]. For completeness, we apply our proposed procedure with this
strategy in Section A.2.1. However, the results should be more accurate when using matrix completion to fill the missing blocks
of E. We follow such a strategy here and provide its details as follows. Let 2 denote the set of indices, ij, of the blocks E;; that
can be directly obtained by the images. We denote by M € R3"*3" the desired matrix with blocks {\;;E;; | (i,j) €} and additional
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Figure 8. Median (top) and mean (bottom) absolute rotation errors (in degrees) of LUD and four RSR methods used to initially screen bad cameras
within LUD applied to the 14 datasets of Photo Tourism. For Gendarmenmarkt, the median rotation error of SEMS was 31.04 degrees and mean
error of SFMS was 62.89, which are above the figure range.

completed ones. We approximate M by solving the following relaxed optimization problem (see e.g., [3]):

M= argmin ||[M]|,, subjecttoM;=\;,E;;, (i,j)e. (6)
M6R3n><3n

The Singular Value Thresholding (SVT) algorithm [3] is applied to solve Equation (6). It is worth noting that for some datasets,
the sampling ratio |(2|/n? is smaller than 10%. To prevent the SVT algorithm from diverging, we set a step size § =n2/(10/€2|),
which is smaller than the suggested value in [3, Section 5.1.2]. Since the block M;; is defined as an essential matrix, we further



project it on the essential matrix manifold. Specifically, we define E e R37%3 a5 follows:

/\ijEija if (Z,])EQ

E;={ Pp(M;), if (i.j)¢Q
0 ifi=37,

where for ﬁij =USV', P E(ﬁ”) = Udiag([1,1,0])V " is the projector to the essential manifold. Following the procedures
described in Section 4.2, we apply RSR with d=6 by treating E as a data matrix of D= N =3n, recover a d-dimensional robust
subspace and identify the outlying columns whose distance is largest from this subspace.

We compare mean and median errors of rotations and translations and runtime for the LUD pipeline and the LUD+RSR pipeline for
the following four RSR algorithms: STE, FMS, SEMS, and TME. By LUD+RSR we refer to our proposed camera filtering process by
the chosen RSR algorithm followed by LUD. Figure 8 is a bar plot of rotation errors (in degrees) for all methods and all 14 datasets, Fig-
ure 9 is a bar plot of translation errors (in meters), and Figure 10 is a bar plot of run times. As explained in the main text, we only aim to
compare the effect of the camera screening on the overall time (and this screening may potentially increase time due to issues with paral-
lel rigidity), but it is not the actual time as LUD+RSR uses information for scaling factors obtained by LUD. For completeness, Table 4
summarizes the results of LUD, LUD+STE, and LUD+SFMS, whereas Table 5 presents the results of LUD+TME and LUD+FMS.

Overall, STE yields better accuracy than other RSR methods. We observe that LUD+STE generally improves the estimation of
camera parameters (both rotations and translations) over LUD, though the median rotation errors are comparable. The improvement
of LUD+STE is significant for both the Roman Forum and Gendarmenmarkt. In terms of runtime, both LUD+STE and LUD+SFMS
demonstrate improvements, where LUD+SFMS is even faster than LUD+STE. While this does not yet imply faster handling of
the datasets (as we use initial scaling factors obtained by LUD), it indicates some efficiency in the removal of outliers.

Table 6 reports results for Gendarmenmarkt when removing 45% of outlying columns. We note that STE significantly reduces
the pipeline’s runtime and improves the accuracy for both rotations and translations. TME also exhibits improvement, but it is less
accurate and is also slower than STE. On the other hand, FMS and SFMS do not improve the accuracy. While the resulting errors
are still large, their improvement shows some potential in dealing with difficult SfM structure by initially removing cameras in a
way that may help eliminate some scene ambiguities, which are prevalent in Gendarmenmarkt.
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Figure 9. Median (top) and mean (bottom) absolute translation errors (in meters) of LUD and four RSR methods used to initially screen bad cameras
within LUD applied to the 14 datasets of Photo Tourism.

Finally, in order to get an idea about the behavior of the outliers, Figure 11 plots the distances of all data points to the STE
subspace, where it uses a logarithmic scale. Distinguished outliers are noticed in all datasets, but Piazza del Popolo. Moreover,
such significant outliers constitute only a small portion of the columns. As mentioned in the main text, we preferred to avoid heuristic
methods for the cutoff of outliers, and thus assumed a fixed percentage of 20% outlying column vectors.



| | LUD | LUD+STE | LUD+SFMS

Location ‘ n N ‘ n ér ér ér  €Rr Tiotal ‘ n er ér er  er  Tou ‘ n ér ér er  er  Tow
Alamo 570 606,963 563 1.74 047 3.04 1.03 328.8 497 1.90 045 3.08 1.04 2426 466 224 046 444 181 1833
Ellis Island 230 178,324 227 2241 2210 2,14 071 44.6 203 2222 20.62 1.73  0.61 349 194 2135 1730 228 077 347
Madrid Metropolis 330 187,790 319 593 1.84 356 093 45.0 281 597 2.05 321 095 273 288 747 233 491 159 28.5
Montreal N.D. 445 633,938 437 122 056 096 049 237.8 388 1.12 052 1.02 052 159.7 381 1.15 0.54 105 049 1495
Notre Dame 547 1,345,766 543 0.85 0.29 215 0.66 894.0 473 0.69 0.25 1.68 0.63 763.7 480  0.62 0.25 1.60 0.65 785.6
NYC Library 313 259,302 309 6.95 242 241 1.19 53.7 276 6.76 231 258 127 39.5 237 6.93 4.27 3.09 155 87.7
Piazza del Popolo 307 15,791 298 5.29 1.67 290 1.64 65.2 258 5.30 1.60 3.06 1.81 36.6 245 6.34 1.70 333 204 36.2
Piccadilly 2,226 1,278,612 | 2,171 4.04 1.81 482 172 1,649.0 | 1,937 3.98 1.95 437 176 8574 | 1,827 4.98 272 533 201 6544
Roman Forum 995 890,945 967 832 220 204 138 2722 810 5.84 2.19 247 149 1704 811 5.98 223 228 148 1829
Tower of London 440 474171 431 17.86 3.96 292 213 65.2 355 1795 4.79 3.01 263 449 338 1935 4.62 3.64 292 431
Union Square 733 323933 715 11.75 757 659 321 53.7 651 1090  7.29 621 347 53.8 571 13.14 8.81 693 392 36.5
Vienna Cathedral 789 1,361,659 774 13.10 7.21 728 1.65 762.6 685 12.56 6.28 791 1.81 547.1 666 12.82 7.78 8.08 1.80 365.6
Yorkminster 412 525,592 405 5.25 251 223 143 91.9 359 5.51 232 221 148 62.9 335 549 2.66 240 1.60 522
Gendarmenmarkt 671 338,800 654 3882 1746 39.63 643 124.2 596 3294 1470 29.01 4.65 79.2 564 2577 1588 38.16 5.50 77.8

Table 4. Performance of the LUD, LUD+STE and LUD+SFMS pipelines on the Photo Tourism datasets: n and /N are the number of cameras
and key points, respectively (when applying screening, n also denotes the number of the remaining cameras); ér,€ér indicate mean and median
errors of absolute camera rotations in degrees, respectively; ér,ér indicate mean and median errors of absolute camera translations in meters,
respectively; Tioal is the runtime of the pipeline (in seconds).

\ \ LUD+TME \ LUD+FMS
Location ‘ n N ‘ n er er eRr eRr Total ‘ n er er ér er Tiotal
Alamo 570 606,963 463 196 048 304 1.07 2166 | 480 205 051 326 110  203.0
Ellis Island 230 178,324 | 205 2280 2201 287 093 396 | 207 2222 2060 275 0.90 384
Madrid Metropolis 330 187,790 | 288 683 217 573 200 340 | 289 652 197 480 1.77 40.0
Montreal N.D. 445 633,938 381 .10 053 096 048 155.8 380 112 054 097 0.0 167.0
Notre Dame 547 1345766 | 463 062 025 159 0.63 7474 | 479 061 026 137 066 7659
NYC Library 313 259302 | 267 555 191 253 115 416 | 263 614 203 252 125 42.1
Piazza del Popolo 307 15,791 251 561 156 296 1.68 41.8 257 540 1.62 305 1.69 413
Piccadilly 2226 1278612 | 1,980 344 165 319 177 12117 | 1888 343 168 320 175 11729
Roman Forum 995 890,945 828 542 208 234 146 1570 | 814 601 219 235 138 185.8
Tower of London 440 474,171 364 18.67 493 3.02 239 48.8 359 1834 462 3.02 262 40.9
Union Square 733 323,933 612 1180 7.68 618 341 494 | 610 1249 748 613 337 44.1
Vienna Cathedral 789 1,361,659 694 1377 726 769 289 4687 692 1354 7.7 770 290 4720
Yorkminster 412 525592 | 360 507 240 215 147 70.8 358 511 244 219 151 733
Gendarmenmarkt 671 338,800 | 602 3543 14.69 2830 4.08 96.7 600 3287 1434 2859 4.09 85.0

Table 5. Performance of the LUD+TME and LUD+FMS pipelines on the Photo Tourism datasets: n and NV are the number of cameras and key
points, respectively (when applying screening, n also denotes the number of the remaining cameras); ér,ér indicate mean and median errors
of absolute camera rotations in degrees, respectively; ér,ér indicate mean and median errors of absolute camera translations in meters, respectively;
Tiota 18 the runtime of the pipeline (in seconds).

Method n ér ér ér €R Tiotal

LUD 654 3882 1746 39.63 643 124.2
LUD+STE 497 2282 1253 2676 3.60 51.24
LUD+TME | 516 25.07 1472 2493 418 6435
LUD+FMS | 559 40.74 18.6 4028 654 102.14
LUD+SEMS | 549 4131 1933 40.65 647 10040

Table 6. Comparison of the four pipelines when 45% outlying columns are eliminated in Gendarmenmarkt. Recall that ér,ér indicate mean
and median errors of absolute camera rotations in degrees, respectively; ér,é7 indicate mean and median errors of absolute camera translations
in meters, respectively; and 7o is the runtime of the pipeline (in seconds).
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Figure 10. Runtime (in seconds) of the LUD pipeline and four LUD-type pipelines including an RSR method to initially screen bad cameras,
applied to the 14 datasets of Photo Tourism.

A.2.1 Initial Camera Removal for SfM without Matrix Completion

For completeness, we also provide the numerical results for the initial camera removal experiment when the absent blocks E;; are
assigned zero matrices. Table 7 and Table 8 showcase the performance of the LUD+RSR piplines without the matrix completion step.
Overall, integrating matrix completion into the LUD+RSR pipelines enhances their performance. The most notable enhancement
for STE is for the mean translation error of the Roman Forum and Gendarmenmarkt. For other RSR algorithm we notice even
more significant improvement with matrix completion. In other words, without matrix completion, the higher accuracy of STE
in comparison to other RSR methods is more noticeable.

| | LUD | LUD+STE | LUD+SFMS
Location | n N| =n er ér ér Cr T | 7 ér ér érn  ér Tow| n ér ér er er T
Alamo 570 606,963 | 563 1.74 047 304 1.03 3288 | 518 1.80 045 302 1.03 2832 | 466 224 047 444 1.82  219.0
Ellis Island 230 178,324 | 227 2241 2210 214 071 446 | 209 2251 2078 281 090 410 195 2151 1850 227 077 333
Madrid Metropolis 330 187,790 | 319 593 1.84 356 093 450 | 290  5.69 1.81 324 099 376 | 278 582 225 354 112 321
Montreal N.D. 445 633,938 | 437 122 056 096 049 237.8 | 400 1.09 055 1.01 050 186.5 | 383 114 054 1.03 053 1465
Notre Dame 547 1,345,766 | 543 085 029 215 0.66 8940 | 495 079 027 215 0.64 7984 | 476 072 026 187 066 815.6
NYC Library 313 259302 | 309 695 242 241 119 537 | 278 678 251 257 120 426 | 238 682 4.6l 3.13 149 422
Piazza del Popolo 307 15,791 298 529 1.67 290 1.64 652 | 247  5.60 1.69 222 124 357 | 242  6.62 1.59 351 215 459
Piccadilly 2,226 1,278,612 | 2171 4.04 1.81 482 172 16490 | 1976 429 198 476 1.71 950.7 | 1827 498 272 533 201 6616
Roman Forum 995 890,945 967 8.32 220 204 138 2722 849 10.04 233 218 145 1756 814 946  2.68 2.15 1.50  150.5
Tower of London 440 474,171 431 1786 396 292 213 652 | 373 1883 321 2.80 201 532 | 351 2231 410 318 246 270
Union Square 733 323933 | 715 1175 757 659 321 537 | 624 1192 755 624 359 496 | 558 1342 9.04 687 348 385
Vienna Cathedral 789 1,361,659 | 774 1310 721 7.28 1.65 7626 | 715 1278 626 766 1.66 5902 | 666 1282 778  8.08 1.80 4440
Yorkminster 412 525,592 | 405 525 2.51 223 143 91.9 368 526 2.50 222 150 732 338 5.67 3.13 241 1.56  48.0
Gendarmenmarkt 671 338,800 | 654 38.82 1746 39.63 643 1242 | 616 3760 1549 3129 475 1083 | 543 3534 2753 6289 3104 837

Table 7. Performance of the LUD, LUD+STE and LUD+SFEMS pipelines without matrix completion on the Photo Tourism datasets: n and
N are the number of cameras and key points, respectively (when applying screening, n also denotes the number of the remaining cameras); ér,er
indicate mean and median errors of absolute camera rotations in degrees, respectively; ér,é7 indicate mean and median errors of absolute camera
translations in meters, respectively; Tio is the runtime of the pipeline (in seconds).
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Figure 11. Distance of columns of E to the subspace recovered by STE (in log scale). The distances are sorted and plotted in descending order.
All datasets exhibit significant outlying columns.

\ \ LUD+TME \ LUD+FMS
Location ‘ n N ‘ n er ér ér  €R Tiota ‘ n er ér ér  €R Tiota
Alamo 570 606,963 463 1.96 0.48 3.04 1.07 216.6 480 2.05 0.51 326 1.10 203.0
Ellis Island 230 178,324 205 22.80 22.01 2.87 093 39.6 207 2222  20.60 275 0.90 384
Madrid Metropolis 330 187,790 288 6.83 2.17 573 2.00 34.0 289 6.52 1.97 480 1.77 40.0
Montreal Notre Dame 445 633,938 381 1.10 0.53 096 048 155.8 389 1.12 0.54 0.97 0.50 167.0
Notre Dame 547 1,345,766 463 0.62 0.25 1.59 0.63 7474 479 0.61 0.26 1.37  0.66 765.9
NYC Library 313 259,302 267 5.55 1.91 253 1.15 41.6 263 6.14 2.03 252 1.25 42.1
Piazza del Popolo 307 15,791 251 5.61 1.56 296 1.68 41.8 257 5.40 1.62 305 1.69 41.3
Piccadilly 2,226 1,278,612 | 1980 344 1.65 319 1.77 1,211.7 | 1888 343 1.68 320 175 1,1729
Roman Forum 995 890,945 828 542 2.08 234 146 157.0 814 6.01 2.19 235 1.38 185.8
Tower of London 440 474,171 364 18.67 493 3.02 239 48.8 359 18.34 4.62 3.02 262 40.9
Union Square 733 323,933 612 11.80 7.68 6.18 341 494 610 1249 7.48 6.13 3.37 44.1
Vienna Cathedral 789 1,361,659 694  13.77 7.26 7.69 2.89 468.7 692 13.54 7.17 770 290 472.0
Yorkminster 412 525,592 360 5.07 240 2,15 147 70.8 358 5.11 244 2.19 1.51 73.3
Gendarmenmarkt 671 338,800 602 3543 14.69 2830 4.08 96.7 600 32.87 1434 28.59 4.09 85.0

Table 8. Performance of the LUD+TME and LUD+FMS pipelines without matrix completion on the Photo Tourism datasets: n and N are
the number of cameras and key points, respectively (when applying screening, n also denotes the number of the remaining cameras); ér,ér
indicate mean and median errors of absolute camera rotations in degrees, respectively; ér,ér indicate mean and median errors of absolute camera
translations in meters, respectively; Ty is the runtime of the pipeline (in seconds).



