
Supplementary Material
Our theoretical results are proved and further explained in [28]. Additional numerical results and discussion are provided in §A.

We refer to references, equation numbers and sections from the main text. We also follow the same numbering of figures, tables
and equations, and thus start, for example, with Figure 3.

A. Supplementary Details for the Numerical Experiments

Figure 3. Median (top) and mean (bottom) relative rotation errors (in degrees) obtained by seven algorithms for the 14 datasets of Photo Tourism.
The numerical results are reported in Table 1

We provide additional numerical results and details for our two different types of applications in §A.1 and §A.2.

A.1. Supplementary Details for Fundamental Matrix Estimation

We review some details about data normalization applied for RSR methods in §A.1.1 and the implementation of the RSR methods in
§A.1.2. We provide additional numerical results in §A.1.3, and runtime comparison of only the RSR algorithms (including RANSAC)
in §A.1.4.

A.1.1 Details of Data Normalization

Fundamental matrix estimation requires proper normalization of the input data [17]. We chose to use a normalization that is very similar
to the commonly used one in the 8-point algorithm; nevertheless, we apply the normalization to the full dataset as our method is applied
to the full dataset. We notice that there are even slightly better normalization techniques, however, to make sure that our competitive
performance is due to the proposed method and not the normalization itself, we use the direct generalization of the standard method.



Figure 4. Median (top) and mean (bottom) errors of direction vectors (in degrees) obtained by seven algorithms for the 14 datasets of Photo Tourism.
The numerical results are reported in Table 2

Each data point is represented by a column vector of homogeneous coordinates, x2R3=(x1,x2,1)>. For the N data points,
x1,...,xN , we form the data matrices X=[x1,...,xN ]2R3⇥N . Let (µ1,�1) and (µ2,�2) be the means and standard deviations of
the first and the second rows of X, respectively. We normalize the points as follows:

x̂i=Txi, 1iN,

where the normalizing transformation T2R3⇥3 is given by
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This normalization is applied to any RSR method that uses all data points at once to form the subspace. In our experiments, these
methods include FMS, SFMS, TME and STE. For RANSAC and its variants (which compute subspaces for 8 points at a time)
we use the common normalization [17], which is exactly the normalization above, but applied to the 8 points chosen each time.

A.1.2 Review of the Implementation of the RSR Algorithms

We apply each RSR method (TME, FMS, SFMS and STE) as follows. Given two normalized data matrices (see Section A.1.1)
X̂= [x̂1,...,x̂N ]2R3⇥N and X̂0= [x̂0

1,...,x̂
0
N ]2R3⇥N whose columns are normalized feature points for the two given images,

we form the data matrix X̃= [x̃1,...,x̃N ] 2R9⇥N with the following columns: x̃i = vec(x̂ix̂0>
i ), i= 1,...,N . We apply each

RSR method with d=8 and D=9 (that is, we aim to recover an 8-subspace in R9) to X̃. We find the orthogonal vector to this
8-dimensional subspace in R9 and reshape it in into a 3 by 3 matrix F̃. In order to report a proper fundamental matrix with rank



2, we replace its lowest singular value with 0. Finally, we obtain the estimated fundamental matrix for the original data (before
normalization) as follows: T>F̂T0, where T and T0 are the normalization transformations defined in Appendix A.1.1.

A.1.3 Additional Numerical Results for Fundamental Matrix Estimation

We assess the quality of the fundamental matrix estimation by the median and mean errors of relative rotation and direction vectors
directly obtained by the fundamental matrices for the various methods. We recall that these methods include STE (our proposed
algorithm), TME [47, 50], FMS [24], SFMS [24], vanilla RANSAC [10], DEGENSAC [7] and LO-RANSAC [6]. We first explain
how we compute the above errors for any of these methods.

For any two cameras, i and j, We estimate the fundamental matrix eFij from the correspondence pairs of the images of these
cameras and then extract from eFij the relative rotation, eRij, and the direction vector (that is, relative translation normalized to have
norm 1) in the coordinates of camera i, etij [17]. We remark that we need to normalize the relative translation to obtain direction
vectors due to the scale ambiguity of the fundamental matrix. For cameras i and j, the relative rotation error compares the estimated
relative rotation, eRij, and the ground-truth one (provided by the Photo Tourism database), {R⇤

ij}, as follows:
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Note that the estimated direction vectors, {etij}, are defined up to a global orientation and in order to align them with the
ground-truth information (given in the frame of camera i) obtained from the Photo Tourism data set, {t⇤ij}, we find a rotation matrix
Ralign, which minimizes

P
1i,jNkt⇤ij�Ralignetijk2F . For cameras i and j, the error of direction vectors is

eT =cos�1(|t⇤ij ·Ralignetij|).

We remark that the estimated direction vector,etij in the frame of camera i implicitly requires estimating both the direction vector
in world’s coordinates and the absolute rotation matrix (up to global scale) that maps from world’s coordinates to the frame of camera
i, and thus seems to be susceptible to large errors.

Location RANSAC DEGENSAC LO-RANSAC TME SFMS FMS STE
ẽR êR ẽR êR ẽR êR ẽR êR ẽR êR ẽR êR ẽR êR

Alamo 14.90 20.02 13.13 18.38 13.12 18.35 14.13 19.50 14.98 20.44 15.33 21.02 11.51 18.65
Ellis Island 5.17 14.17 4.10 11.26 4.09 11.38 11.48 24.64 13.22 34.06 14.27 37.16 6.71 17.57
Madrid Metropolis 13.61 22.52 11.57 21.28 11.56 21.48 14.89 24.38 17.89 27.58 18.05 28.78 12.11 21.63
Montreal N.D. 3.36 7.14 2.69 5.69 2.66 5.72 4.55 7.18 6.56 10.22 6.94 10.74 2.72 5.80
NYC Library 8.16 14.34 6.64 12.49 6.60 12.33 8.76 13.97 7.50 14.35 7.18 15.35 6.99 12.25
Notre Dame 7.25 15.84 4.99 11.67 5.03 11.68 12.67 19.16 9.40 17.36 7.96 16.54 6.86 15.11
Piazza del Popolo 3.59 8.54 3.00 7.32 3.02 7.45 4.51 9.10 9.59 15.98 10.35 17.69 3.28 8.21
Piccadilly 7.30 17.11 6.08 15.42 6.03 15.47 8.47 17.85 10.73 22.12 11.95 24.29 6.81 16.38
Roman Forum 6.11 12.29 5.42 10.69 5.41 10.68 5.69 10.90 6.41 13.75 6.46 14.05 4.55 9.60
Tower of London 5.24 14.16 4.96 12.69 4.94 12.64 5.20 14.47 5.27 13.55 5.77 15.02 4.18 12.03
Union Square 4.82 11.89 4.70 11.46 4.73 11.60 5.44 12.95 6.24 16.34 6.82 18.91 4.81 11.94
Vienna Cathedral 5.04 11.23 4.05 8.98 4.03 9.01 11.44 18.29 12.67 20.31 13.12 21.27 7.05 13.75
Yorkminster 6.31 13.97 5.39 11.85 5.33 11.70 7.52 15.83 8.55 16.93 8.92 17.63 4.87 11.75
Gendarmenmarkt 12.05 29.99 10.99 28.89 10.93 28.99 13.28 30.05 14.77 31.48 15.09 32.38 11.83 29.10

Table 1. Median and mean relative rotation errors (in degrees) obtained by seven algorithms for the 14 datasets of Poto Tourism. ẽR is the median
relative rotation error, êR is the mean relative rotation error.

Figure 3 is a bar plot presenting the errors of relative rotations (in angles) for the different methods and all 14 datasets and
Figure 4 showcases the errors of direction vectors. For completeness, we record the presented numerical values in Table 1 (for relative
rotations) and Table 2 (for direction vectors). Figure 5 presents the mean Average Accuracy (mAA) [18] for rotation with threshold
10�, where as opposed to the former errors which need to be small, higher mAA is better.

We note that STE significantly outperforms FMS and SFMS. STE also outperforms TME, where the only cases where TME
outperforms STE is for direction vector estimation for the NYC Library and Notre Dame datasets. In terms of relative rotation



Location RANSAC DEGENSAC LO-RANSAC TME SFMS FMS STE
ẽT êT ẽT êT ẽT êT ẽT êT ẽT êT ẽT êT ẽT êT

Alamo 32.20 36.97 30.09 35.46 30.11 35.57 31.36 36.49 39.31 41.74 39.85 41.98 29.25 35.00
Ellis Island 17.16 29.04 11.98 24.43 11.90 24.45 42.62 42.42 48.11 46.62 47.79 46.02 25.48 33.44
Madrid Metropolis 21.67 29.56 19.36 27.83 19.09 27.82 19.23 27.71 23.22 30.47 23.18 30.52 19.04 27.47
Montreal N.D. 7.49 16.51 5.57 13.80 5.53 13.75 8.25 16.55 33.20 38.61 34.65 39.51 5.62 14.71
NYC Library 15.17 24.87 10.77 21.35 10.80 21.25 25.48 32.62 48.89 48.34 48.69 48.02 28.09 35.79
Notre Dame 20.91 29.83 18.82 28.40 18.75 28.30 22.61 30.74 35.38 40.63 35.16 40.60 31.68 38.12
Piazza del Popolo 7.58 17.35 5.95 15.31 5.93 15.34 8.88 18.70 35.17 39.99 31.98 37.96 7.16 17.83
Piccadilly 22.89 30.99 19.40 28.58 19.39 28.58 29.58 35.36 36.83 40.06 36.33 39.76 23.95 31.64
Roman Forum 13.24 23.96 11.07 21.52 10.97 21.30 12.51 22.86 16.42 27.96 16.24 27.95 8.52 19.13
Tower of London 9.10 20.18 7.90 18.30 7.95 18.20 8.88 20.15 10.27 22.00 8.77 20.21 5.80 16.46
Union Square 28.97 36.03 29.23 36.21 28.60 35.73 36.98 40.98 42.97 44.76 44.02 45.71 33.93 39.60
Vienna Cathedral 13.88 24.94 10.33 21.89 10.26 21.89 34.24 39.24 46.63 48.11 48.46 49.88 29.88 38.53
Yorkminster 14.17 25.11 11.20 22.05 11.05 21.99 18.54 28.87 23.48 31.42 22.82 31.03 9.09 20.17
Gendarmenmarkt 24.25 31.51 23.32 31.11 23.03 30.96 29.82 36.33 35.70 39.88 35.44 40.00 28.09 35.37

Table 2. Median and mean errors of direction vectors (in degrees) obtained by seven algorithms for the 14 datasets of Photo Tourism. ẽT is the
corresponding median error, êT is the corresponding mean error.

estimation, STE outperforms vanilla RANSAC, where Ellis Island and Vienna Cathedral are the only two datasets where RANSAC
outperforms STE. In terms of direction vector estimation, STE outperforms vanilla RANSAC in 7 out of the 14 datasets and in
the rest of them vanilla RANSAC outperforms STE. Anyway, the errors of direction vectors are higher than relative rotation errors
because of an issue discussed above and many references do not present these errors. As shown in Figure 5, STE has a higher
mAA(10�) than other RSR methods. Overall, STE is slightly better than RANSAC. Indeed, the averaged mAA(10�) for STE is
0.44 for STE and 0.41 for RANSAC. However, RANSAC has a noticeable higher mAA (10�) for the following 3 datasets: Ellis
Island, Notre Dame and Vienna Cathedral. On the other hand, DEGENSAC and LO-RANSAC are overall slightly better than STE
(with averaged mAA(10�) 0.45 for both methods), but STE has a noticeably higher mAA (10�) for the following 5 datasets: Alamo,
Montreal Notre Dame, Roman Forum, Tower of London and York Minster.

Figure 5. mAA(10�) obtained by seven algorithms for the 14 datasets of Photo Tourism.

A.1.4 Runtime Comparison of the RSR components

We compare the elapsed time of the different RSR algorithms, including RANSAC and its variants. Since our current implementation
of STE uses Algorithm 2 with m=5 values of � (�2{(2i)�1}5i=1), it is slower than the basic implementation of Algorithm 1 by
a factor 5 . This choice keeps the similar accuracy of STE with more values of � but reduces the overall runtime.

We compared the runtime of STE (with m=5) with RANSAC, TME, FMS and SFMS for the 14 Photo Tourism datasets (using
Matlab implementations). These experiments were carried out on an Apple Silicon M2. For each dataset, the average runtime among
all image pairs is reported in Table 3. Overall, the runtimes of STE and RANSAC are somewhat comparable, where the average



over all datasets of the runtime of RANSAC is 22.91 msec and of STE is 21.91 msec. However, the variance of the runtime of
RANSAC is rather large, unlike STE. We further note that TME was the fastest method, however running STE with m=1, instead
of m=5, is slightly faster than TME. FMS and SFMS are slower than TME and overall faster than STE (with m=5) and RANSAC.

Locations Algorithm Runtimes (ms)

STE TME SFMS FMS RANSAC

Alamo 19.2 4.0 13.7 13.2 11.8
Ellis Island 19.8 4.8 9.8 9.3 44.6
Madrid Metropolis 18.6 3.9 9.3 8.8 11.3
Montreal N.D. 18.0 3.6 18.5 17.8 31.6
NYC Library 21.1 4.5 22.5 22.0 51.7
Notre Dame 19.4 4.7 18.5 17.9 15.5
Piazza del Popolo 19.1 4.2 9.3 8.8 22.7
Piccadilly 19.0 4.4 8.8 8.2 24.0
Roman Forum 18.1 3.7 16.0 15.5 7.3
Tower of London 17.6 3.7 15.4 14.8 4.5
Union Square 19.0 4.2 9.6 9.1 10.2
Vienna Cathedral 20.5 4.5 21.3 20.8 37.5
Yorkminster 17.4 3.6 15.1 14.5 18.2
Gendarmenmarkt 18.7 3.7 8.5 8.0 29.9

Table 3. Elapsed runtimes (in milliseconds) of STE, TME, SFMS, FMS and RANSAC for the 14 datasets of Photo Tourism. The runtimes are
averaged over all image pairs in the dataset.

The runtime of RANSAC mainly depends on the fraction of the outliers. For higher fractions of oultiers, RANSAC significantly
slowed down compared to other methods, showcasing exponential dependence of time on the fraction of outliers. Indeed, if " denotes
the fraction of inliers and d the subspace dimension and one requires 99% confidence, the expected number of iterations of RANSAC
is given as log(1�.99)/log(1�"

d) [44].
To further investigate the expected correlation of the runtime and the fraction of outliers, we also considered artificial instances,

which we repeatedly generated 100 times. We fixed N = 400 and generated two data matrices X= [x1,...,xN ] 2 R3⇥N and
X0=[x0

1,...,x
0
N ]2R3⇥N , whose columns contain inlier and outlier feature correspondence pairs in homogenous coordinates as

follows. We varied the fraction of designated outliers, where a fixed fraction of columns of X and X0 (with the same index) were
designated as outliers and the rest as inliers. For generating an outlier correspondence pair, the first two coordinates of xi and x0

i

were uniformly sampled in [0,1000] and the third coordinates was set to be 1. For an inlier correspondence pair, we followed the
procedure of [19] to sample (xi,x0

i) satisfying the epipolar constraint.
Given the generated matrices X and X0, we first normalized them according to the procedure described in §A.1.1 and then used

the procedure described in §A.1.2 to estimate the fundamental matrix from these two matrices using any of the RSR methods with
d=8 and D=9. The application of RANSAC is also similar to before. The relative rotation was extracted from the estimated
fundamental matrix and its error was computed based on the given ground truth rotation for the inliers, which are clarified when
following the details of generating them in [19]. Using these 100 samples we computed mAA(10�).

Figure 6 reports mAA(10�) and runtimes of STE (with m=5), TME, SFMS, FMS and RANSAC for different fractions of
outliers. The maximum number of iteration of RANSAC was set to be 1000. We note that STE (with m=5) achieved the highest
mAA(10�) when the fraction of outliers was at most 50% and in this case the mAA(10�) values of FMS are slightly below those
of STE. On the other hand, when the fraction of outliers is at least 60% the mAA(10�) values of STE are higher than STE, but
they indicate low accuracy. The values of RANSAC, SFMS and TME are below the ones of STE. Moreover, the mAA(10�) values
of TME are rather low and indicate low accuracy.

Regarding runtime, we first note that FMS, SFMS and TME have fixed times, since the number of data points, N , is fixed.
Moreover, TME is faster then FMS and SFMS whose time is comparable. On the other hand, STE has a smaller run time for low
fraction of outliers, since it converges faster then. Furthermore, the runtime of STE stabilizes when the fraction of outliers is large
and it is slightly above FMS and SFMS. RANSAC is relatively fast for a small fraction of outliers, but it is much slower than all
other method when the fraction of outliers is at least 50%.

The above mentioned formula of expected number of iterations implies that RANSAC can easily fail with large d. In the setting of 3-



Figure 6. mAA(10�) (left) and runtime (right, in seconds) of five algorithms for the synthetic feature points data. The x-axis indicates the fraction
of the outliers, where the total number of points is fixed as 400.

view homography estimation, D=27 and d=26. We thus tried the standard haystack model with D=27, d=26, N=400 and varied
fractions of outliers. To measure error, we use the angle between L⇤, the inlier subspace of the haystack model, and L, the estimated
subspace. Figure 7 compares the errors and runtimes of the five algorithms for different fractions of outliers. We note that STE has the
lowest error, but they notably increase for fraction of outliers larger than 50%. The errors of SFMS and TME are only slightly above
than those of STE. RANSAC performed poorly, even for very small fractions of outliers and FMS is even worse than RANSAC.

We note that the runtimes of the RSR methods behave similarly to the ones in Figure 6. In each one of the experiments RANSAC
needed the maximal number of iterations, which was set as 1000, and obtained the same runtime, which is significantly larger than
the other runtimes.

Figure 7. Angular error (left, in radius) and runtime (right, in seconds) of five algorithms for the generalized haystack synthetic data. The error
is angle between L⇤ and the estimated subspace L̂ recovered by the algorithm. The x-axis is the fraction of outliers.

A.2. Additional Numerical Results for Initial Camera Removal for SfM

We use all 14 datasets of the Photo Tourism database. As mentioned in the main text, scale factors are first obtained by the LUD
algorithm. Many of the blocks Eij are absent when there are no matching features between images i and j. On the other hand,
the geometric relationship between cameras i and j still exists and the ground-truth essential matrix is thus well defined. In such
scenarios, a common strategy is to assign to Eij a zero matrix [39]. For completeness, we apply our proposed procedure with this
strategy in Section A.2.1. However, the results should be more accurate when using matrix completion to fill the missing blocks
of E. We follow such a strategy here and provide its details as follows. Let ⌦ denote the set of indices, ij, of the blocks Eij that
can be directly obtained by the images. We denote by M2R3n⇥3n the desired matrix with blocks {�ijEij |(i,j)2⌦} and additional



Figure 8. Median (top) and mean (bottom) absolute rotation errors (in degrees) of LUD and four RSR methods used to initially screen bad cameras
within LUD applied to the 14 datasets of Photo Tourism. For Gendarmenmarkt, the median rotation error of SFMS was 31.04 degrees and mean
error of SFMS was 62.89, which are above the figure range.

completed ones. We approximate M by solving the following relaxed optimization problem (see e.g., [3]):

cM= argmin
M2R3n⇥3n

kMk⇤, subject to Mij=�ijEij, (i,j)2⌦. (6)

The Singular Value Thresholding (SVT) algorithm [3] is applied to solve Equation (6). It is worth noting that for some datasets,
the sampling ratio |⌦|/n2 is smaller than 10%. To prevent the SVT algorithm from diverging, we set a step size �=n

2
/(10|⌦|),

which is smaller than the suggested value in [3, Section 5.1.2]. Since the block Mij is defined as an essential matrix, we further



project it on the essential matrix manifold. Specifically, we define eE2R3n⇥3n as follows:

eEij=

8
><

>:

�ijEij, if (i,j)2⌦

PE(cMij), if (i,j) 62⌦

0 if i=j,

where for cMij =USV>, PE(cMij) =Udiag([1,1,0])V> is the projector to the essential manifold. Following the procedures
described in Section 4.2, we apply RSR with d=6 by treating eE as a data matrix of D=N=3n, recover a d-dimensional robust
subspace and identify the outlying columns whose distance is largest from this subspace.

We compare mean and median errors of rotations and translations and runtime for the LUD pipeline and the LUD+RSR pipeline for
the following four RSR algorithms: STE, FMS, SFMS, and TME. By LUD+RSR we refer to our proposed camera filtering process by
the chosen RSR algorithm followed by LUD. Figure 8 is a bar plot of rotation errors (in degrees) for all methods and all 14 datasets, Fig-
ure 9 is a bar plot of translation errors (in meters), and Figure 10 is a bar plot of run times. As explained in the main text, we only aim to
compare the effect of the camera screening on the overall time (and this screening may potentially increase time due to issues with paral-
lel rigidity), but it is not the actual time as LUD+RSR uses information for scaling factors obtained by LUD. For completeness, Table 4
summarizes the results of LUD, LUD+STE, and LUD+SFMS, whereas Table 5 presents the results of LUD+TME and LUD+FMS.

Overall, STE yields better accuracy than other RSR methods. We observe that LUD+STE generally improves the estimation of
camera parameters (both rotations and translations) over LUD, though the median rotation errors are comparable. The improvement
of LUD+STE is significant for both the Roman Forum and Gendarmenmarkt. In terms of runtime, both LUD+STE and LUD+SFMS
demonstrate improvements, where LUD+SFMS is even faster than LUD+STE. While this does not yet imply faster handling of
the datasets (as we use initial scaling factors obtained by LUD), it indicates some efficiency in the removal of outliers.

Table 6 reports results for Gendarmenmarkt when removing 45% of outlying columns. We note that STE significantly reduces
the pipeline’s runtime and improves the accuracy for both rotations and translations. TME also exhibits improvement, but it is less
accurate and is also slower than STE. On the other hand, FMS and SFMS do not improve the accuracy. While the resulting errors
are still large, their improvement shows some potential in dealing with difficult SfM structure by initially removing cameras in a
way that may help eliminate some scene ambiguities, which are prevalent in Gendarmenmarkt.



Figure 9. Median (top) and mean (bottom) absolute translation errors (in meters) of LUD and four RSR methods used to initially screen bad cameras
within LUD applied to the 14 datasets of Photo Tourism.

Finally, in order to get an idea about the behavior of the outliers, Figure 11 plots the distances of all data points to the STE
subspace, where it uses a logarithmic scale. Distinguished outliers are noticed in all datasets, but Piazza del Popolo. Moreover,
such significant outliers constitute only a small portion of the columns. As mentioned in the main text, we preferred to avoid heuristic
methods for the cutoff of outliers, and thus assumed a fixed percentage of 20% outlying column vectors.



LUD LUD+STE LUD+SFMS

Location n N n êT ẽT êR ẽR Ttotal n êT ẽT êR ẽR Ttotal n êT ẽT êR ẽR Ttotal

Alamo 570 606,963 563 1.74 0.47 3.04 1.03 328.8 497 1.90 0.45 3.08 1.04 242.6 466 2.24 0.46 4.44 1.81 183.3
Ellis Island 230 178,324 227 22.41 22.10 2.14 0.71 44.6 203 22.22 20.62 1.73 0.61 34.9 194 21.35 17.30 2.28 0.77 34.7
Madrid Metropolis 330 187,790 319 5.93 1.84 3.56 0.93 45.0 281 5.97 2.05 3.21 0.95 27.3 288 7.47 2.33 4.91 1.59 28.5
Montreal N.D. 445 633,938 437 1.22 0.56 0.96 0.49 237.8 388 1.12 0.52 1.02 0.52 159.7 381 1.15 0.54 1.05 0.49 149.5
Notre Dame 547 1,345,766 543 0.85 0.29 2.15 0.66 894.0 473 0.69 0.25 1.68 0.63 763.7 480 0.62 0.25 1.60 0.65 785.6
NYC Library 313 259,302 309 6.95 2.42 2.41 1.19 53.7 276 6.76 2.31 2.58 1.27 39.5 237 6.93 4.27 3.09 1.55 87.7
Piazza del Popolo 307 15,791 298 5.29 1.67 2.90 1.64 65.2 258 5.30 1.60 3.06 1.81 36.6 245 6.34 1.70 3.33 2.04 36.2
Piccadilly 2,226 1,278,612 2,171 4.04 1.81 4.82 1.72 1,649.0 1,937 3.98 1.95 4.37 1.76 857.4 1,827 4.98 2.72 5.33 2.01 654.4
Roman Forum 995 890,945 967 8.32 2.20 2.04 1.38 272.2 810 5.84 2.19 2.47 1.49 170.4 811 5.98 2.23 2.28 1.48 182.9
Tower of London 440 474171 431 17.86 3.96 2.92 2.13 65.2 355 17.95 4.79 3.01 2.63 44.9 338 19.35 4.62 3.64 2.92 43.1
Union Square 733 323933 715 11.75 7.57 6.59 3.21 53.7 651 10.90 7.29 6.21 3.47 53.8 571 13.14 8.81 6.93 3.92 36.5
Vienna Cathedral 789 1,361,659 774 13.10 7.21 7.28 1.65 762.6 685 12.56 6.28 7.91 1.81 547.1 666 12.82 7.78 8.08 1.80 365.6
Yorkminster 412 525,592 405 5.25 2.51 2.23 1.43 91.9 359 5.51 2.32 2.21 1.48 62.9 335 5.49 2.66 2.40 1.60 52.2
Gendarmenmarkt 671 338,800 654 38.82 17.46 39.63 6.43 124.2 596 32.94 14.70 29.01 4.65 79.2 564 25.77 15.88 38.16 5.50 77.8

Table 4. Performance of the LUD, LUD+STE and LUD+SFMS pipelines on the Photo Tourism datasets: n and N are the number of cameras
and key points, respectively (when applying screening, n also denotes the number of the remaining cameras); êR,ẽR indicate mean and median
errors of absolute camera rotations in degrees, respectively; êT ,ẽT indicate mean and median errors of absolute camera translations in meters,
respectively; Ttotal is the runtime of the pipeline (in seconds).

LUD+TME LUD+FMS

Location n N n êT ẽT êR ẽR Ttotal n êT ẽT êR ẽR Ttotal

Alamo 570 606,963 463 1.96 0.48 3.04 1.07 216.6 480 2.05 0.51 3.26 1.10 203.0
Ellis Island 230 178,324 205 22.80 22.01 2.87 0.93 39.6 207 22.22 20.60 2.75 0.90 38.4
Madrid Metropolis 330 187,790 288 6.83 2.17 5.73 2.00 34.0 289 6.52 1.97 4.80 1.77 40.0
Montreal N.D. 445 633,938 381 1.10 0.53 0.96 0.48 155.8 389 1.12 0.54 0.97 0.50 167.0
Notre Dame 547 1,345,766 463 0.62 0.25 1.59 0.63 747.4 479 0.61 0.26 1.37 0.66 765.9
NYC Library 313 259,302 267 5.55 1.91 2.53 1.15 41.6 263 6.14 2.03 2.52 1.25 42.1
Piazza del Popolo 307 15,791 251 5.61 1.56 2.96 1.68 41.8 257 5.40 1.62 3.05 1.69 41.3
Piccadilly 2,226 1,278,612 1,980 3.44 1.65 3.19 1.77 1,211.7 1,888 3.43 1.68 3.20 1.75 1,172.9
Roman Forum 995 890,945 828 5.42 2.08 2.34 1.46 157.0 814 6.01 2.19 2.35 1.38 185.8
Tower of London 440 474,171 364 18.67 4.93 3.02 2.39 48.8 359 18.34 4.62 3.02 2.62 40.9
Union Square 733 323,933 612 11.80 7.68 6.18 3.41 49.4 610 12.49 7.48 6.13 3.37 44.1
Vienna Cathedral 789 1,361,659 694 13.77 7.26 7.69 2.89 468.7 692 13.54 7.17 7.70 2.90 472.0
Yorkminster 412 525,592 360 5.07 2.40 2.15 1.47 70.8 358 5.11 2.44 2.19 1.51 73.3
Gendarmenmarkt 671 338,800 602 35.43 14.69 28.30 4.08 96.7 600 32.87 14.34 28.59 4.09 85.0

Table 5. Performance of the LUD+TME and LUD+FMS pipelines on the Photo Tourism datasets: n and N are the number of cameras and key
points, respectively (when applying screening, n also denotes the number of the remaining cameras); êR,ẽR indicate mean and median errors
of absolute camera rotations in degrees, respectively; êT ,̃eT indicate mean and median errors of absolute camera translations in meters, respectively;
Ttotal is the runtime of the pipeline (in seconds).

Method n êT ẽT êR ẽR Ttotal

LUD 654 38.82 17.46 39.63 6.43 124.2
LUD+STE 497 22.82 12.53 26.76 3.60 51.24
LUD+TME 516 25.07 14.72 24.93 4.18 64.35
LUD+FMS 559 40.74 18.6 40.28 6.54 102.14
LUD+SFMS 549 41.31 19.33 40.65 6.47 100.40

Table 6. Comparison of the four pipelines when 45% outlying columns are eliminated in Gendarmenmarkt. Recall that êR,ẽR indicate mean
and median errors of absolute camera rotations in degrees, respectively; êT ,̃eT indicate mean and median errors of absolute camera translations
in meters, respectively; and Ttotal is the runtime of the pipeline (in seconds).



Figure 10. Runtime (in seconds) of the LUD pipeline and four LUD-type pipelines including an RSR method to initially screen bad cameras,
applied to the 14 datasets of Photo Tourism.

A.2.1 Initial Camera Removal for SfM without Matrix Completion

For completeness, we also provide the numerical results for the initial camera removal experiment when the absent blocks Eij are
assigned zero matrices. Table 7 and Table 8 showcase the performance of the LUD+RSR piplines without the matrix completion step.
Overall, integrating matrix completion into the LUD+RSR pipelines enhances their performance. The most notable enhancement
for STE is for the mean translation error of the Roman Forum and Gendarmenmarkt. For other RSR algorithm we notice even
more significant improvement with matrix completion. In other words, without matrix completion, the higher accuracy of STE
in comparison to other RSR methods is more noticeable.

LUD LUD+STE LUD+SFMS

Location n N n êT ẽT êR ẽR Ttotal n êT ẽT êR ẽR Ttotal n êT ẽT êR ẽR Ttotal

Alamo 570 606,963 563 1.74 0.47 3.04 1.03 328.8 518 1.80 0.45 3.02 1.03 283.2 466 2.24 0.47 4.44 1.82 219.0
Ellis Island 230 178,324 227 22.41 22.10 2.14 0.71 44.6 209 22.51 20.78 2.81 0.90 41.0 195 21.51 18.50 2.27 0.77 33.3
Madrid Metropolis 330 187,790 319 5.93 1.84 3.56 0.93 45.0 290 5.69 1.81 3.24 0.99 37.6 278 5.82 2.25 3.54 1.12 32.1
Montreal N.D. 445 633,938 437 1.22 0.56 0.96 0.49 237.8 400 1.09 0.55 1.01 0.50 186.5 383 1.14 0.54 1.03 0.53 146.5
Notre Dame 547 1,345,766 543 0.85 0.29 2.15 0.66 894.0 495 0.79 0.27 2.15 0.64 798.4 476 0.72 0.26 1.87 0.66 815.6
NYC Library 313 259,302 309 6.95 2.42 2.41 1.19 53.7 278 6.78 2.51 2.57 1.20 42.6 238 6.82 4.61 3.13 1.49 42.2
Piazza del Popolo 307 15,791 298 5.29 1.67 2.90 1.64 65.2 247 5.60 1.69 2.22 1.24 35.7 242 6.62 1.59 3.51 2.15 45.9
Piccadilly 2,226 1,278,612 2171 4.04 1.81 4.82 1.72 1,649.0 1976 4.29 1.98 4.76 1.71 950.7 1827 4.98 2.72 5.33 2.01 661.6
Roman Forum 995 890,945 967 8.32 2.20 2.04 1.38 272.2 849 10.04 2.33 2.18 1.45 175.6 814 9.46 2.68 2.15 1.50 150.5
Tower of London 440 474,171 431 17.86 3.96 2.92 2.13 65.2 373 18.83 3.21 2.80 2.01 53.2 351 22.31 4.10 3.18 2.46 27.0
Union Square 733 323,933 715 11.75 7.57 6.59 3.21 53.7 624 11.92 7.55 6.24 3.59 49.6 558 13.42 9.04 6.87 3.48 38.5
Vienna Cathedral 789 1,361,659 774 13.10 7.21 7.28 1.65 762.6 715 12.78 6.26 7.66 1.66 590.2 666 12.82 7.78 8.08 1.80 444.0
Yorkminster 412 525,592 405 5.25 2.51 2.23 1.43 91.9 368 5.26 2.50 2.22 1.50 73.2 338 5.67 3.13 2.41 1.56 48.0
Gendarmenmarkt 671 338,800 654 38.82 17.46 39.63 6.43 124.2 616 37.60 15.49 31.29 4.75 108.3 543 35.34 27.53 62.89 31.04 83.7

Table 7. Performance of the LUD, LUD+STE and LUD+SFMS pipelines without matrix completion on the Photo Tourism datasets: n and
N are the number of cameras and key points, respectively (when applying screening, n also denotes the number of the remaining cameras); êR,ẽR
indicate mean and median errors of absolute camera rotations in degrees, respectively; êT ,̃eT indicate mean and median errors of absolute camera
translations in meters, respectively; Ttotal is the runtime of the pipeline (in seconds).



Figure 11. Distance of columns of E to the subspace recovered by STE (in log scale). The distances are sorted and plotted in descending order.
All datasets exhibit significant outlying columns.

LUD+TME LUD+FMS

Location n N n êT ẽT êR ẽR Ttotal n êT ẽT êR ẽR Ttotal

Alamo 570 606,963 463 1.96 0.48 3.04 1.07 216.6 480 2.05 0.51 3.26 1.10 203.0
Ellis Island 230 178,324 205 22.80 22.01 2.87 0.93 39.6 207 22.22 20.60 2.75 0.90 38.4
Madrid Metropolis 330 187,790 288 6.83 2.17 5.73 2.00 34.0 289 6.52 1.97 4.80 1.77 40.0
Montreal Notre Dame 445 633,938 381 1.10 0.53 0.96 0.48 155.8 389 1.12 0.54 0.97 0.50 167.0
Notre Dame 547 1,345,766 463 0.62 0.25 1.59 0.63 747.4 479 0.61 0.26 1.37 0.66 765.9
NYC Library 313 259,302 267 5.55 1.91 2.53 1.15 41.6 263 6.14 2.03 2.52 1.25 42.1
Piazza del Popolo 307 15,791 251 5.61 1.56 2.96 1.68 41.8 257 5.40 1.62 3.05 1.69 41.3
Piccadilly 2,226 1,278,612 1980 3.44 1.65 3.19 1.77 1,211.7 1888 3.43 1.68 3.20 1.75 1,172.9
Roman Forum 995 890,945 828 5.42 2.08 2.34 1.46 157.0 814 6.01 2.19 2.35 1.38 185.8
Tower of London 440 474,171 364 18.67 4.93 3.02 2.39 48.8 359 18.34 4.62 3.02 2.62 40.9
Union Square 733 323,933 612 11.80 7.68 6.18 3.41 49.4 610 12.49 7.48 6.13 3.37 44.1
Vienna Cathedral 789 1,361,659 694 13.77 7.26 7.69 2.89 468.7 692 13.54 7.17 7.70 2.90 472.0
Yorkminster 412 525,592 360 5.07 2.40 2.15 1.47 70.8 358 5.11 2.44 2.19 1.51 73.3
Gendarmenmarkt 671 338,800 602 35.43 14.69 28.30 4.08 96.7 600 32.87 14.34 28.59 4.09 85.0

Table 8. Performance of the LUD+TME and LUD+FMS pipelines without matrix completion on the Photo Tourism datasets: n and N are
the number of cameras and key points, respectively (when applying screening, n also denotes the number of the remaining cameras); êR,ẽR
indicate mean and median errors of absolute camera rotations in degrees, respectively; êT ,̃eT indicate mean and median errors of absolute camera
translations in meters, respectively; Ttotal is the runtime of the pipeline (in seconds).


