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This supplementary file contains the following six sec-
tions: Sec. 1 further validates and explains the motivation of
our proposed method through two key experiments. Sec. 2
provides additional quantitative experimental results. Sec. 3
demonstrates the application of our method in scenarios
where large-scale datasets do not exist. Sec. 4 includes more
ablation experiments and their analyses. Sec. 5 presents ad-
ditional visual results. Sec. 6 summarizes the limitations of
our method and future directions for development.

1. Intuition and explanations of our proposal
In this section, we present two key experiments that

demonstrate the intuition behind our proposal and provide
detailed explanations. Regarding the first key experiment,
we investigated sketch-conditioned generation using Con-
trolNet with frozen cross-attention layers (the parameters of
the cross-attention layers in ControlNet remain unchanged,
which are the same as those of the corresponding cross-
attention layers in Stable Diffusion.). Regarding the second
key experiment, we compare the influence of feeding the
correct prompt to Stable Diffusion and a generated incorrect
prompt to ControlNet during inference.

The visualization results of Fig. 1 validated our approach
and highlighted how text prompts negatively impact learn-
ing new conditions in few-shot scenarios. As shown in the
Fig. 1b, there exists an obvious misalignment between the
generated results and the given sketch when we trained Con-
trolNet with frozen cross-attention layers on 100 pairs of
training samples. These results indicate the negative impacts
of text condition on learning new conditions, especially when
we only have very little training data. Comparing the results
from Fig. 1c to Fig. 1f, the inference results demonstrate
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that even when updating all parameters of ControlNet during
the training process, the problem of the cross-modal gap
between the text and the new conditions still exists, which is
even more severe under the few-shot scenarios.

2. More Quantitative Results

In this section, we provide additional quantitative results,
including an evaluation of computational cost, an evaluation
of text-image alignment, and a user study.

Computational Cost. In Table 1, we report the value of
trainable parameters, GPU memory, FLOPs, and inference
time. Compared to ControlNet, our method can achieve
better results with lower computational cost.

Methods Params. Mem. FLOPs Tinfer

ControlNet [14] 1378.17 MB 8.8 G 455.2 G 10s
T2iAdapter [11] 295.14 MB 10.5 G 338.7 G 5s

Ours 964.57 MB 9.5 G 441.4 G 10s

Table 1. The results of the Computational Cost. The best result is
indicated in bold, while the second-best result is underlined.

Evaluation for Text-Image Alignment. We evalu-
ate text-image alignment scores using standard CLIP met-
rics for sketch-conditioned (COCO17) and segmentation-
conditioned (COCO-stuff) generation. We used the “ViT-
L/14” CLIP model for training and “ViT-B/16” for evalua-
tion. Results in Table 2 demonstrate our method’s effective-
ness in improving alignment between conditions and image
contents, while maintaining text-image correspondence.

Conditions
Methods ControlNet-100 T2IAdapter-100 Ours wo. CNR Ours

Sketch 28.86 29.89 30.64 30.84
Segmentation 28.23 29.92 29.87 30.26

Table 2. The results of the Text-Image Alignment scores. The
best result is indicated in bold, while the second-best result is
underlined.



(a) sketch (b) FreezeCA (c) Wrong Pr.-100 (d) ControlNet-100 (e) Wrong Pr. (f) ControlNet

Figure 1. Visualization results of two key experiments. ”FreezeCA” means using ControlNet with frozen cross-attention layers. ”Wrong Pr”
means inputting the correct prompt to Stable Diffusion and inputting an incorrect prompt to ControlNet during inference. ”-100” means that
the model was trained on a training set consisting of 100 pairs of training samples.

User Study. In our user study, we assess the generation
quality (qual.) and condition-content consistency (cons.)
across five conditional-generation tasks. Participants were
asked to rank the compared methods on 10 examples per task,
evaluating them from best to worst in terms of quality and
consistency. As shown in Table 3, We received 118 effective
responses, which collectively highlighted the superiority of
our method.

Methods
Conditions Sketch Seg. map Depth Edge Pose

qual. cons. qual. cons. qual. cons. qual. cons. qual. cons.
ControlNet-100 2.58 1.91 2.56 2.31 2.47 2.19 3.03 2.64 2.81 2.66
T2iAdapter-100 2.23 2.04 2.78 3.13 2.64 2.93 2.58 3.09 2.75 3.31
PromptDiff-100 — — 3.41 3.34 2.86 3.66 2.95 2.81 — —
HumanSD-100 — — — — — — — — 2.14 2.83

Ours 1.16 1.36 1.25 1.27 2.03 1.29 1.44 1.41 2.30 1.28

Table 3. The results of Human Evaluation. The best result is
indicated in bold, while the second-best result is underlined.

3. Challenge Applications
Generative applications, especially in fields with data con-

straints like astronomy, healthcare, and physical simulations,
greatly benefit from few-shot generation. We demonstrate
its utility in generating new data with limited condition sam-
ples through tasks like face-to-thermal, thermal-to-face, and
hed-to-old-photo generation. For the face-to-thermal and
thermal-to-face tasks, we used 100 pairs of training sam-
ples from the Thermal Faces dataset proposed in [8] as our
training set. For the hed-to-old-photo generation task, we
employed 100 pairs of training samples from the dataset
proposed in [3, 4] as our dataset. The prompts for all the
samples in the training set were obtained through BLIP2 [9].
As shown in Fig. 2, compared with ControlNet, our method
effectively learns novel conditions and possesses a better

generative quality, exemplifying its efficiency with limited
training data. Applications include security checks and crim-
inal investigations for thermal-based generation and training
restoration models with generated old photos.
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Figure 2. Visualization results for the three tasks: face-to-thermal,
thermal-to-face, and hed-to-old-photo generation.

4. More Analysis on Ablation Studies
In this section, we discuss the influence of different scales

of training samples on generation quality and consistency.
A simple experiment for validating the robustness of our
method is also conducted with different batches of training
samples. We also discussed the different effects brought
about by using ϵ-based prediction and x0-based prediction
during the second stage of training (Condition-specific Neg-
ative Rectification in the main paper).

Different Scales of Training Samples. Taking the
segmentation-guided generations task on COCO-stuff [2]
as an example, we randomly select 10, 50, 100, 500, and
1000 images as the training batches and compare between
ControlNet [14], T2IAdapter [11], and our method. The
values of FID [5] and cSSIM [12] for each method are re-
ported in Fig. 3. A common trend is that using more training



samples can benefit the learning of new conditions. Yet our
method is more effective and efficient than the other two
methods in terms of both generation quality and structural
consistency. Notably, our method could achieve competitive
performance compared to ControlNet and T2iAdapter which
are trained with 500 or even larger amounts of training sam-
ples, with only 100 training samples, further demonstrating
the necessity of eliminating the textual influence.
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Figure 3. The curves of (a)FID score(↓), and (b)cSSIM score(↑)
over a varying number of training samples for segmentation-guided
generations on COCO-stuff [2].

We also visualize the generated images of the three ap-
proaches using different training samples in Fig. 4. Our
method could efficiently learn the structural information of
the provided conditions when the number of training samples
is limited to 50, while ControlNet requires 100 training ex-
amples for a roughly aligned layout and T2iAdapter requests
even more training samples. The content of our generated
images is also faithful and more diverse, demonstrating the
efficiency and effectiveness of our approach.
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Figure 4. Visual comparison over varying numbers of training
samples for segmentation-guided generations on COCO-stuff [2].
The first row shows the exemplar image and the corresponding text
description.

Note that all the methods failed to obtain convincible
generation results when only 10 training examples were
available, which is the major limitation of these works. We
will leave it to our future work to explore the potential of

adapting novel conditions under the guidance of extremely
low-shot exemplars.

Impact of Varing Training Data Batches. To affirm
the training robustness of our methodology across distinct
sets of training samples, we randomly selected 10 batches
of data within the COCO training dataset, each of them
consisting of 100 training pairs. The subsequent training
was conducted with sketch inputs as a conditioning factor.
The results are reported in Fig. 5. The average FID over the
10 generation tasks is 20.891, with a standard deviation of
0.854. Additionally, the average value of the cSSIM is 0.692,
accompanied by a standard deviation of 0.006.
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Figure 5. The curves of FID and cSSIM over varying contents of
100 training samples for sketch-guided generations on COCO [10].

Impact of the ϵ-based and x0-based Prediction. Here
we compare the visual quality of the generated results by
inferencing with the two general diffusion score functions.
As shown in Eq. 2 in the main paper, the ground truth of ε̃θ is
not standard Gaussian noise ε. Utilizing standard diffusion
loss to bias ε̃θ towards ε may result in decreased image
quality. As shown in the Fig. 6, we performed additional
experiments using the standard ϵ-based loss, which leads to
deteriorated generation quality. Consequently, we adopt the
x0-based loss as the optimizing objective of our framework.

sketch ϵ-based x0-based sketch ϵ-based x0-based

Figure 6. Visual comparison between the ϵ-based prediction and
x0-based prediction

5. Additional Visualizations
We provide more comparison of text-to-image gener-

ation results conditioned on sketch (Fig. 7), segmenta-
tion (Fig. 8), depth (Fig. 9), pose (Fig. 11), and edge (Fig. 10).
The compared methods including ControlNet-1.0 [14],
T2IAdapter [11], HumanSD [6], and PromptDiff [13].

More diverse generation results of sketch, segmentation,
depth, and edge, are shown in Fig. 12, Fig. 13, Fig. 14, and
Fig. 15, respectively. The contents of the generated images
are realistic and visually pleasing, while maintaining a highly



structural consistency with the provided condition exemplar
and semantic consilience with the given text description.

For each picture, we recommend zooming in for more
detailed visualization.

6. Limitations and Future Work
In this section, we briefly discuss the potential limitations

and future influence of our work.
Limitations. While we have significantly reduced the

data sample requirements during fine-tuning, our framework
still demands up to 100 condition-image pairs, which might
remain challenging for certain scenarios. Additionally, as our
non-unified framework requires separate training for each
condition, its scalability to multiple modalities is limited.

Future Works. We will continue investigating
lightweight conditioning techniques to reduce data costs
for ”handcrafting” text-to-image models and enhance their
control and scalability.
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There are two giraffes sitting together in the wild.

A big purple bus parked in a parking spot.

Many different slices of pizza with a white sauce.

Conditions (a) ControlNet [14] (b) ControlNet-100 (c) T2IAdapter [11] (d) T2IAdapter-100 (e) Ours

Figure 7. Comparisons of sketch-guided text-to-image generations on COCO [10].

A bus stuck in traffic on a busy highway.

A cat sitting on top of a bench in a field.

An old church building with clocks built into the tower and an arched doorway.

Conditions (a) ControlNet [14] (b) ControlNet-100 (c) T2IAdapter [11] (d) T2IAdapter-100 (e) PromptDiff [13] (f) PromptDiff-100 (g) Ours

Figure 8. Comparisons of mask-guided text-to-image generations on COCO-stuff [2].



Image result for henri martin.

Thomas Kinkade - Painter of Light - The Contrast Magazine.

Dunstanburgh Mono by colin63.

Conditions (a) ControlNet [14] (b) ControlNet-100 (c) T2IAdapter [11] (d) T2IAdapter-100 (e) PromptDiff [13] (f) PromptDiff-100 (g) Ours

Figure 9. Comparisons of depth-guided text-to-image generations on InstructPix2Pix [1].

Blue-green vase with fruit by Pamela C. Newell.

Pink skunk anemone fish, Amphiprion perideraion, Fiji, natural history stock photograph.

A fjord in summer by Adelsteen Normann - reproduction oil painting.

Conditions (a) ControlNet [14] (b) ControlNet-100 (c) T2IAdapter [11] (d) T2IAdapter-100 (e) PromptDiff [13] (f) PromptDiff-100 (g) Ours

Figure 10. Comparisons of edge-guided text-to-image generations on InstructPix2Pix [1].



Kids drawing, a drawing of a man and a girl flying kites.

Kids drawing, a painting of a rainbow and children walking in the grass.

Watercolor, a painting of a man in uniform standing on a boat.

Conditions (a) ControlNet [14] (b) ControlNet-100 (c) T2IAdapter [11] (d) T2IAdapter-100 (e) HumanSD [6] (f) HumanSD-100 (g) Ours

Figure 11. Comparisons of pose-guided text-to-image generations on HumanArt [7].

A narrow hotel room
with two made up beds.

A man wearing a hat
and a gray jacket.

Two brown teddy bears
sitting side by side.

A desk area with a
computer monitor, keyboard and mouse.

Figure 12. Our results of diverse generation conditioned on sketch.



A passenger bus
pulling up to the side of a street.

A brown teddy bear
sitting in a red chair.

A very big city bus
on a big street.

Not really a good choice
for this shirt and tie combination.

Figure 13. Our results of diverse generation conditioned on segmentation map.

Train Print The Wabash 2814
Class M1 4 8 2 Locomotive

Deer Wall Art - Painting - High
Country Buck by Paul Krapf

Pathway Through Moonlit Mist,
blue landscape Fox Mother by Nalak-Bel

Figure 14. Our results of diverse generation conditioned on depth map.



Gustave Jean Jacquet
French Portrait Of A Young Lady.

Portrait of beautiful sensual woman with
elegant hairstyle, perfect makeup, jewelry and dress.

Awesome watercolor landscape painting,
creek and tree summer Northern flicker.

Figure 15. Our results of diverse generation conditioned on edge map.
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