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A. More Implementation Details
We set batch size as 64 for the Multi-domain Task In-
cremental Learning (MTIL) benchmark and 128 for the
Class Incremental Learning (CIL) benchmark. The learn-
ing rates are searched among [10−3, 10−4]. Label smooth-
ing can substitute the regularization of weight decay and
achieve better performance. The label smoothing strength
is searched between {0.1, 0.2}. For CIL, we set weight de-
cay as 0 and label smoothing as 0.0.

B. Impact of dataset size on expert number
The additional ablation experiments are conducted to ex-
plore the optimal number of experts for different task size,
and the results are shown in Table 1. The table showcases
the impact of dataset size on the optimal number of experts
NE in full-shot setting. We notice that, in general, more
tasks require more experts, while simply applying more ex-
perts does not always improve accuracy.

C. Analysis on the Threshold and Different
Loss in DDAS
To further analyze the impact of different thresholds
(Thres) in the Distribution Discriminative Auto-Selector
(DDAS), we perform ablation experiments with different
thresholds in the methods (“Ours” and “Ours†”), which are
shown in Figure 1. The thresholds are searched within the
range of [0.06, 0.07]. The results show that the performance
fluctuation of our method is relatively stable within a certain
threshold range. Compared with the method “Ours†”, the
method “Ours” demonstrates more consistent performance
as the threshold changes.

In addition, we conduct ablation experiments on various
loss functions for the autoencoder of DDAS, and the results
are shown in Table 2. It can be seen that our method achieve
the best performance when utilizing the Mean Squared Er-
ror (MSE) loss.

D. More Comparison Results on MTIL
The complete result of the MTIL benchmark with T
datasets is a matrix of T × T , where T is the number of
incremental tasks. In Table 3 and 4, we present the com-
plete matrices of both “Ours” (trained in 1k iterations) and
“Ours†” (trained in 3k iterations) for the MTIL benchmark.
In addition, Table 5 and 6 show the results of the full-shot
and few-shot MTIL benchmarks in Order-II. The Order-II

sequence includes: StanfordCars, Food, MNIST, Oxford-
Pet, Flowers, SUN397, Aircraft, Caltech101, DTD, Eu-
roSAT, CIFAR100. As we can see, the proposed method
performs favorably against state-of-the-art approaches in
terms of three metrics in both settings. Notably, the zero-
shot transfer ability of the proposed method closely reaches
the upper bound of the pretrained CLIP.

E. Effectiveness of Router Selection in MoE-
Adapters
We visualize the frequency that MoE-Adapters’ experts are
selected for each incremental task, as shown in Figure 2.
As we can see, the activation frequencies of experts are
recorded in all visual transformer blocks of CLIP, with 22
experts for each block and Top-k as 2. The visualization
demonstrates the sparsity of the experts activated by our
router selection and the cooperation between special experts
and shared experts.

NE
4-task 8-task 11-task

Trans. Avg. Last Trans. Avg. Last Trans. Avg. Last
2 65.8 60.7 59.0 65.9 63.2 63.2 67.3 64.1 61.5
4 64.9 67.5 77.1 65.0 71.2 77.9 66.5 71.1 74.1
8 65.1 68.3 78.3 65.4 73.7 84.9 67.4 75.7 82.4

16 65.3 67.7 77.9 65.5 73.9 84.9 68.0 76.4 84.6
20 65.5 67.4 77.0 66.6 74.6 85.8 67.6 76.0 84.2

Table 1. Ablation study on the number of experts across different
size of dataset.

Method full-shot 5-shot
Trans. Avg. Last Trans. Avg. Last

ZSCL[78] 68.1 75.4 83.6 65.3 66.7 67.4
MAE 68.4 73.8 77.8 68.5 70.9 70.5

Smooth L1 68.3 76.9 84.9 69.0 72.9 72.6
MSE 68.9 76.7 85.0 68.9 76.3 76.1

Table 2. Ablation study of different loss in DDAS.

(a) 1k iterations (b) 3k iterations

Transfer Average Last Transfer Average Last

Figure 1. The ablation study of different thresholds in DDAS, and
the thresholds are searched within the range of [0.06, 0.07].
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Transfer 87.9 68.2 44.4 50.0 70.7 88.7 59.7 89.1 64.5 65.5 68.9

Aircraft 51.5 87.9 68.2 45.1 54.6 71.3 88.8 59.5 89.1 64.5 65.3
Caltech101 51.0 92.3 68.2 44.0 54.6 70.2 88.8 59.5 89.1 64.5 65.5
CIFAR100 50.0 91.5 86.7 44.2 44.4 70.8 88.8 59.8 89.1 64.5 65.5
DTD 50.4 92.0 86.5 78.6 45.9 70.7 88.8 59.8 89.1 64.5 65.5
EuroSAT 50.4 91.8 86.5 78.3 96.1 70.4 88.8 59.8 89.1 64.5 65.6
Flowers 50.3 92.3 86.3 79.1 95.7 95.9 88.7 59.8 89.1 64.5 65.6
Food 49.7 93.0 86.4 78.9 95.3 95.8 89.5 59.8 89.1 64.5 65.7
MNIST 49.7 92.7 86.3 79.0 95.5 95.6 89.5 98.3 89.1 64.5 65.6
OxfordPet 49.7 92.4 86.3 79.2 95.1 94.6 89.5 98.1 89.8 64.5 65.5
Cars 49.4 92.4 86.2 78.9 94.8 94.7 89.5 98.2 89.7 81.9 65.5
SUN397 49.8 92.2 86.1 78.1 95.7 94.3 89.5 98.1 89.9 81.6 80.0 85.0

Average 50.2 91.9 83.1 69.4 78.9 84.0 89.1 73.7 89.3 67.7 66.9 76.7

Table 3. Accuracy (%) of our method (Ours) on the MTIL benchmark with order-I. Each row represents the performance on every dataset
of the model trained after the corresponding task. Transfer , Average , and Last metrics are shown in color.

A
ir

cr
af

t[
10

]

C
al

te
ch

10
1

[5
]

C
IF

A
R

10
0

[8
]

D
T

D
[2

]

E
ur

oS
A

T
[6

]

Fl
ow

er
s

[1
1]

Fo
od

[1
]

M
N

IS
T

[3
]

O
xf

or
dP

et
[1

2]

C
ar

s
[7

]

SU
N

39
7

[1
5]

Transfer 87.9 68.2 42.4 41.4 68.7 88.7 59.4 89.1 64.5 64.0 67.4

Aircraft 54.3 87.9 68.2 45.1 54.6 71.3 88.8 59.5 89.1 64.5 65.3
Caltech101 54.2 92.0 68.2 40.7 54.6 67.7 88.7 59.5 89.1 64.5 63.5
CIFAR100 54.3 91.6 88.8 41.4 28.3 68.3 88.8 59.3 89.1 64.5 64.0
DTD 54.3 91.7 88.8 80.0 28.2 68.1 88.8 59.4 89.1 64.5 64.1
EuroSAT 54.3 91.7 88.8 79.9 98.0 68.1 88.8 59.4 89.1 64.5 64.0
Flowers 54.3 91.5 88.8 79.7 98.1 97.8 88.5 59.4 89.1 64.5 63.9
Food 54.3 91.0 88.8 80.0 98.1 97.8 89.7 59.3 89.1 64.5 63.8
MNIST 54.4 91.2 88.8 80.0 98.1 97.8 89.7 99.1 89.1 64.5 63.8
OxfordPet 54.3 90.8 88.8 79.8 98.1 97.6 89.6 99.1 89.6 64.5 63.4
Cars 54.2 90.8 88.8 80.2 98.1 97.5 89.6 99.1 89.5 89.2 63.8
SUN397 54.3 90.8 88.8 80.3 98.1 97.5 89.6 99.1 89.5 89.2 83.8 87.4

Average 54.3 91.0 85.1 69.7 77.5 84.5 89.1 73.8 89.2 69.0 65.8 77.2

Table 4. Accuracy (%) of our method (Ours†) on the MTIL benchmark with order-I. Each row represents the performance on every dataset
of the model trained after the corresponding task. Transfer , Average , and Last metrics are shown in color.
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Figure 2. Visualization of the frequency that experts are selected for each task in task incremental learning. The activation frequencies of
MoE-Adapters’ experts are recorded in all transformer blocks of the visual encoder, with 22 experts and Top-K as 2. The y-axis represents
incremental tasks and the x-axis represents the experts.


