CapsFusion: Rethinking Image-Text Data at Scale
 Supplementary Material

6. More CapsFusion Examples

More examples of web-based raw captions, synthetic captions generated by BLIP, and their CapsFusion captions generated by CapsFus-LLaMA are provided in Fig. 8. CAPSFUSION captions can organically organize information from raw and synthetic captions.

7. Prompting Templates for Data Refining

The prompt for ChatGPT and CapsFus-LLaMA to integrate raw and synthetic captions is shown below.

```
Please merge and refine the information
    from the two given sentences.
Sentence 1 provides detailed real-world
knowledge, yet it suffers from flaws in
    sentence structure and grammar.
    Sentence 2 exhibits nice sentence
structure, but lacking in-depth real-world
details and may contain false information.
Please combine them into a new sentence,
ensuring a well-structured sentence while
    retaining the detailed real-world
    information provided in Sentence 1.
Avoid simply concatenating the sentences.
            Sentence 1: <raw caption>
    Sentence 2: <synthetic caption>
```


8. Hyperparameters

Training hyperparameters of CAPSFUS-LLaMA and LMM are presented in Tabs. 6 and 7 respectively.

9. Details of SEED-Bench

SEED-Bench [32] incorporates 12 evaluation tasks including both the spatial and temporal comprehension to comprehensively assess the visual understanding capability of LMMs. We select 9 image-text tasks from them (the left 3 tasks are video-text tasks) for evaluation. The task details are introduced below.

- Scene Understanding. This task focuses on the global information in the image. Questions can be answered through a holistic understanding of the image.
- Instance Identity. This task involves the identification of a certain instance in the image, including the existence or category of a certain object in the image. It evaluates a model's object recognition capability.
- Instance Location. This task concerns the absolute position of one specified instance. It requires a model to correctly localize the object referred to in the question.

Configuration	CAPSFusion Training
Model init	LLaMA-2-13B
Batch size	128
Data	1 million (raw, synthetic, fused)
triplets from ChatGPT	
Training Epoch	2
Peak Learning Rate	$1 \mathrm{e}-5$
End Learning Rate	0
Warmup Steps	500
LR Scheduler	cosine
Optimizer	AdamW [38]
Optimizer hyper-parameters	$\beta_{1}, \beta_{2}, \epsilon=0.9,0.95$, le- 8
Weight decay	0.0

Table 6. Summary of CAPSFUS-LLaMA training hyperparameters.

Configuration	Large Multimodal Model Training
Model init	LLaMA-2-13B
Batch size	8192
Data	$10 / 50 / 100$ million image-text pairs
Training Epoch	1
Peak Learning Rate	$3 \mathrm{e}-4$
End Learning Rate	$3 \mathrm{e}-5$
Warmup Steps	2000
LR Scheduler	cosine
Optimizer	AdamW $[38]$
Optimizer hyper-parameters	$\beta_{1}, \beta_{2}, \epsilon=0.9,0.98,1 \mathrm{e}-6$
Weight decay	0.0

Table 7. Summary of LMM training hyperparameters.

- Instance Attributes. This task is related to the attributes of an instance, such as color, shape or material. It assesses a model's understanding of an object's visual appearance.
- Instances Counting. This task requires the model to count the number of a specific object in the image. This requires the model to understand all objects, and successfully count the referred object's instances.
- Spatial Relation. This task asks an model to ground the two mentioned objects, and recognize their relative spa-

Figure 8. Examples of (1) raw captions (from LAION-2B), (2) synthetic captions (from LAION-COCO, generated by BLIP), and their corresponding (3) CAPSFUSION captions. Knowledge from raw captions (in blue) and information from synthetic captions (in yellow) are organically fused into integral CAPSFUSION captions. The dataset will be released and more examples can be found there.
tial relation within the image.

- Instance Interaction. This task requires the model to recognize the state relation or interaction relations between
two humans or objects.
- Visual Reasoning. This task evaluates if a model is able to reason based on the visual information. This requires the

Figure 9. Outputs of models trained with different caption datasets. Models trained on raw and CAPSFUSION captions (M1 and 3) possess strong world knowledge (in blue), while the model trained on synthetic captions (M2) can only generate generic concepts (in red).
model to fully understand the image and utilize its commonsense knowledge to correctly answer the questions.

- Text Understanding. For this task, the model should answer question about the textual elements in the image.

