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7. Datasets Detials
SEVIR, the Storm EVent ImagRy (SEVIR) [33] is an
annotated, curated and spatio-temporally aligned dataset
across five multiple data types including visible satellite
imagery, infrared satellite imagery (mid-level water vapor
and clean longwave window), NEXRAD radar mosaic of
VIL(vertically integrated liquid mosaics) and ground light-
ning events. In this paper, we focus on the short term
weather forecasting task and select all the radar mosaics of
VIL as the main data. The dataset contains 20393 weather
events from multiple sensors in 2017-2020. Each event con-
sists of a 4-hour length sequence of images sampled in 5
minute steps covering 384 km×384 km patches sampled at
locations throughout the continental U.S.. As our task is to
predict the future VIL up to 20 frames (100 min) given 5
observed frames (25 min), we follow [8] to sample the 25
continuous frames with stride = 12 in every event and split
the dataset into training, validation and test sets with the
time point January 1, 2019 and June 1, 2019, respectively.
The frames are rescaled back to the range 0-255 and bina-
rized at thresholds [16,74,133,160,181,219] to calculate the
CSI and HSS following original settings in [33].

MeteoNet [17] is a multimodel dataset including full
time series of satellite and radar images, weather models
and ground observations. It covers geographic areas of 550
km×550 km in the northwestern quarter of France and a
span over three years, and records every 6 min from 2016
to 2018. Like the SEVIR, we split the radar sequence from
2016 to 2018 into training, validation and test sets with the
time point January 1, 2018 and June 1, 2018, respectively.
Then, we apply Algorithm 1 to filter precipitation events
with a stride-20 sliding window to reduce the noise in the
data. Note that a mean pixel threshold T pixel is used as
a filter to precipitation events. The data range of frames in
MeteoNet is set to [0-70] and the thresholds are set to [12,
18, 24, 32] following [17] for the CSI and HSS evaluation.

Shanghai Radar [5] is a dataset contains continuous
radar echo frames generated by volume scans in intervals
of approximately 6 minute from October 2015 to July 2018
in Pudong, Shanghai. Every radar echo map covers 501
km×501 km area. We follow [5] to preprocess the echo
sequence and also apply Algorithm 1 to filter 25-frame
weather event datasets. The data range of frames in Shang-
hai Radar is set to [0-70] and the thresholds are set to [20,
30, 35, 40] following [17] for the CSI and HSS computa-
tion.

CIKM is a radar dataset from CIKM AnalytiCup

2017 Competition, recording precipitation samples in 101
km×101km area of Guangdong, China. Each sample set-
tles 15 historical radar echo maps as a sample in which the
time interval between two consecutive maps is 6-minute.
We follow [21] to process the dataset to pad each echo map
into 128× 128 and follow the original setting to split train-
ing, validation and test sets. We transform the pixel in each
frame to the reflectivity of [0,76] dBZ and use the thresh-
olds [20,30,35,40] to compute the CSI and HSS.

The lengths of event sequences in each dataset are set
to 25 frames except for the CIKM dataset with 15 frames.
Compared to most of the existing studies, which aim to
make an hour prediction (e.g., 10 frames with a 6-minute
interval), our tasks (except for CIKM dataset) are for the
forecast in two hours (i.e. 20 frames) in this paper, which are
more challenging. Although some recent studies attempt to
achieve two hours prediction by frame interpolation (e.g.,
predicting 10 frames with a 12-minute interval), this trick
simplifies the complexity of precipitation dynamics and re-
sults in a degrading temporal resolution for prediction.

Algorithm 1 Weather Event Filtering

1: Given continuous frames s, pixel threshold Tpixel

2: i← 10
3: Lin, Lout ← 5, 20
4: event set← {}
5: while i+ Lout < Len(s) do
6: if Mean(s[i]) > Tpixel then
7: event← s[i− Lin : i+ Lout]
8: event pixel←

∑
frame∈event Mean(frame)

9: if event pixel >= (Lin + Lout)Tpixel/2 then
10: Add event to event set.
11: i← i+ Lout

12: Continue
13: end if
14: end if
15: i← i+ 1
16: end while
17: Return event set

8. DiffCast: Implementation Details

In this section, we will give a detailed description of the im-
plementation for DiffCast’s main architecture and its train-
ing and inference process, as well as our experimental set-
tings.



Table 5. Detailed implementation of our Temp-Attn Block and
GlobalNet.

Temp-Attn Block
ResBlock×2 2×[Conv3x3 + GroupNorm8+ SiLU] + Conv3x3 Res Operator

Temporal Attention Conv5x5 (Spatial) + Conv1x1 (Temporal)+FC Attention Operator
Down/Upsampler Conv1x1

GlobalNet
ResBlock×4 2×[Conv3x3 + GroupNorm8+ SiLU] + Conv3x3 Res Operator
ConvGRU×4 Conv3x3 + Conv3x3; HiddenState GRU Operator

Downsampler×4 Conv1x1

Architecture of DiffCast. We have described the main
architecture of the DiffCast model in section 4.3. Here,
we present our detailed implementation of the Temp-Attn
Block and GlobalNet, which are mainly composed of tem-
poral attention operator[3, 30] and ConvGRU operator[27,
37], respectively, as summarized in Table 5.

Algorithm 2 Training of The Framework

1: while not converged do
2: Sampling a sequence (x, y) ∼ D, where len(x) =

Lin, len(y) = Lout

3: Making basic prediction µ = Pθ1(x), where
len(µ) = Lout

4: Building residual sequence r following Eq. (7)
5: Grouping segments sj from r following Eq. (17)
6: Extracting global hidden state h following Eq. (14)
7: Sampling diffusion step t ∼ U(0, ..., T )
8: Lϵ ← 0
9: while j < ⌈Lout

K ⌉ do
10: ϵ ∼ N (0, I)
11: Disturbing sj to stj following Eq. (1)
12: Getting denoising loss Lj

ϵ following Eq. (19)
13: Lϵ = Lϵ + Lj

ϵ

14: end while
15: Computing deterministic loss LP following Eq. (6)
16: Computing final loss L following Eq. (12) given α
17: (θ1, θ2, θ3)← (θ1, θ2, θ3)− ▽(θ1,θ2,θ3)L
18: end while

Training and Inference. The DiffCast is trained with an
end-to-end manner as shown in Figure 2 (b), where the base
deterministic predictor and residual diffusion model are op-
timized within the same training iteration. The complete
training procedure is summarized in Algorithm 2. In the
inference phase, the framework also utilizes the base pre-
dictor to estimate the global trend and then apply the dif-
fusion model to generate the residual segments autogres-
sively. The final prediction is obtained by combining the
two components. The inference procedure is summarized
in Algorithm 3.

Experimental details All experiments are conducted on
a computer with NVIDIA A6000 GPU (48G memory) and
all models, including DiffCast equipped with various back-
bones and single backbones, can fit in a single GPU. As for

Algorithm 3 Inference of The Framework

1: Given initial frames x
2: Making basic prediction µ = Pθ1(x)
3: Extracting global hidden state h following Eq. (14)
4: j ← 0, ŝj−1 ← 0
5: while j < ⌈Lout

K ⌉ do
6: sTj ∼ N (0, 1)
7: while Reverse diffusion from t = T to t = 1 do
8: ϵ ∼ N (0, I)
9: Estimating target noise ϵθ2 following Eq. (16)

10: Recovering st−1
j from stj following Eq. (5)

11: end while
12: Getting current residual segment ŝj
13: end while
14: Computing target frames ŷ following Eq. (13)

the implementation of various backbones, we easily rebuild
the most backbones from OpenSTL [31] library to adapt
with DiffCast. We construct the GTUNet with a hierarchi-
cal UNet architecture with temporal attention blocks. This
structure is composed of four up/down layers, with a hid-
den size of 64, and is subsequently upscaled/downscaled
by factors of 1,2,4,8, respectively. Despite the increased
number of parameters (e.g., from 20.13MB to 66.40 MB
for DiffCast MAU) and higher training costs (e.g., from 18
hours at 12 batch size to 23 hours at 6 batch size for 30K
iterations) associated with the DiffCast framework, we can
attain a great paramount for modeling the distribution of
stochastic temporal evolution. Furthermore, the DiffCast
framework can expedite the forecast by utilizing optimiza-
tion techniques such as DDIM, DPM-solver etc. This ca-
pability can fully meet the requirements of short-term pre-
cipitation forecasting task in real-world scenarios (e.g., 17
seconds to produce 20-frame forecasts), enabling real-time
predictions that are both more accurate and realistic.

9. Additional Analysis

In this section, we give an extra analysis on the design of
framework loss, the computational complexity and the hy-
perparameter K.

w/o stochastic Loss. We decompose the determinism
and local stochastics in precipitation evolution and model
them with a deterministic component and a residual dif-
fusion component, respectively. Different from other two-
stage frameworks, we train the overall framework in an end-
to-end manner to simulate the interplay between the deter-
minism and uncertainty, which indicate that the gradient
from stochastic diffusion denoising loss can also optimize
the deterministic backbone. In Table 6, we compare the
performance between the pure deterministic backbones and
the intermediate output µ from deterministic component in



Table 6. Analysis of performance for backbones with different
optimization strategies on SEVIR.

Deterministic Method CSI CSI-pool4 CSI-pool16 HSS LPIPS SSIM

SimVP 0.2662 0.2844 0.3452 0.3369 0.3914 0.6570
DiffCast Simvp-µ 0.2690 0.2828 0.3134 0.3320 0.3961 0.6728

Earthformer 0.2513 0.2617 0.2910 0.3073 0.4140 0.6773
DiffCast Earthformer-µ 0.2490 0.2579 0.2834 0.3040 0.4391 0.6685

MAU 0.2463 0.2566 0.2861 0.3004 0.3933 0.6361
DiffCast MAU-µ 0.2542 0.2848 0.3157 0.3361 0.3929 0.7028

ConvGRU 0.2560 0.2685 0.3005 0.3124 0.3785 0.6764
DiffCast ConvGRU-µ 0.2635 0.2873 0.3197 0.3350 0.3860 0.6818

PhyDNet 0.2560 0.2685 0.3005 0.3124 0.3785 0.6764
DiffCast PhyDNet-µ 0.2659 0.2785 0.3105 0.3252 0.3748 0.6811
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Figure 9. Qualitative results of SimVP w/o stochastic loss.

DiffCast. The results show that the stochastic loss indeed
leads to a positive optimization on most of the deterministic
backbones.

We point out that the conventional deterministic meth-
ods always under-estimate the high-value echoes with the
increasing lead time (shown in Figure 1). To further inves-
tigate this, we show in Figure 8 the performance of Diff-
Cast SimVP, in terms of different thresholds. We observe
that with the stochastic modeling the high-value echoes in-
deed can be more accurately maintained and predicted. Ad-
ditionally, we show the qualitative results of SimVP w/o
stochastic diffusion loss in Figure 9. The results indi-
cate that DiffCast SimVP-µ alleviates the echo value fading
away issue compared to SimVP, which implies that stochas-
tic objectives indeed help optimize the deterministic model.

Complexity and Hyperparameter K. In Table 7, we
report the tradeoff between model size, memory and time
cost conditioned on different segment length based on our

Table 7. Complexity analysis and hyperparameter K.
Training Inference

Model Size CSI Memory Time Cost Memory Time Cost
MAU 20.13M 0.2463 21759MB 14.5h 2297MB 0.29s

DiffCast MAU(K=2) 66.38M 0.2638 43815MB 22.8 h 3881MB 42s
DiffCast MAU(K=4) 66.39M 0.2697 35471MB 20.5 h 3731MB 21s
DiffCast MAU(K=5) 66.40M 0.2716 33791MB 19.5 h 3815MB 16s

DiffCast MAU(K=10) 66.43M 0.2548 30443MB 18.5h 4065MB 8s

experimental setting with batchsize=4 for 30K training it-
erations. K is selected from {2, 4, 5, 10} on validation set
and K=5 delivers the best tradeoff. There are more require-
ments for memory compared with base predictor but it is
acceptable in our practical application. It is notable that the
model size is not influenced by K.

10. More Qualitative Results
In this section, we show more illustrative examples on dif-
ferent datasets to compare our DiffCast with baseline meth-
ods. As shown in Figure 10, 12, 11, 13, all deterministic
backbones deliver blurry results after 60 minutes, with a
phenomenon of high-value echoes and details fading away.
However, when equipped into our DiffCast framework, all
the prediction results of the backbones are consistently en-
hanced, where the forecast images are not blurry anymore,
and the high-value echoes and details are carefully pre-
served. All the observations validate the effectiveness of
the proposed DiffCast framework.
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Figure 10. Prediction examples on the SEVIR.
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Figure 11. Prediction examples on the Shanghai Radar.
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Figure 12. Prediction examples on the MeteoNet.
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Figure 13. Prediction examples on the CIKM dataset.


