
DiffForensics: Leveraging Diffusion Prior to Image Forgery Detection and
Localization

Supplementary Material

In this supplementary material, we include many details
of our work: 1) the detailed implementation of the proposed
DiffForensics and the used datasets. 2) more results for
image forgery localization, including qualitative and quan-
titative experiments. 3) the performance of DiffForensics
against other two post-processing attacks, as well as the
results on social media transmissions [24]. 4) more abla-
tion experiments on self-supervised denoising diffusion pre-
training.

1. Implementation Details
Architecture. The architecture of our encoder-decoder
framework is shown in Fig. 1. As for the encoder, we
utilize the encoder part of Segformer-B5 [26], which is a
transformer-based segmentation architecture. As for the de-
coder, each block is mainly composed of a feature decod-
ing structure (driven from Unet [22]) and a time embedding
module (driven from [8]). During training, t is uniformly
sampled from 1 to T . By inputting the 256-D embedding
(the output of the encoder) and the time embedding t, we
have the output of the decoder.
Datasets. Details of the datasets used for pre-training, fine-
tuning and evaluation are reported in Table 2. We eval-
uate our model on six datasets, which are tampered by
traditional image editing tools, including CASIAv1+ [2],
Columbia [9], NIST16 [19], IMD2020 [20], DSO-1 [4] and
Korus [13]. And two datasets are tampered by deep gen-
erative models (DGMs), including AutoSplicing [11] and
OpenForensics [16].
• CASIAv1+ [5] contains 920 images depicting differ-

ent objects that have undergone tampering via copy-
move and splicing. The tampered regions are carefully
selected and complemented by various post-processing
techniques, including filtering and blurring. To avoid
data overlap between real images and tampered images,
we follow the composition of [2] and use the data in the
COREL [23] as real images.

• Columbia [9] contains 180 uncompressed spliced tam-
pered images and 183 original images.

• NIST16 [19] presents a challenging collection that en-
compasses all three tampering techniques. The manip-
ulations included in this selection are post-processed to
mask visible indicators.

• IMD2020 [20] consists of 2010 real-life manipulated im-
ages collected from the Internet and corresponding 414
original images.

• DSO-1 [4] contains 100 images of people undergoing
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Figure 1. Architecture of our encoder-decoder framework.

splicing tampering operations.
• Korus [4] contains 220 images of daily scenes taken by

four digital cameras and tampered with all three manipu-
lations.

• AutoSplicing [11] uses the language-image model based
on the diffusion model, DALL-E2 [21], to modify the im-
age either locally or globally guided by text prompts. The
dataset comprises 3621 manipulated images and 2273 au-
thentic images, with varying dimensions from 256 × 256
to 4232 × 4232 pixels.

• OpenForensics [16] contains 18895 tampered images of
several facial images, generated via GAN and incorporat-
ing both genuine and tampered facial images in the latter
category.

2. More Experimental Results

Localization Evaluation. In this part, we illustrate more
comparison results with the SOTA methods in terms of lo-
calization evaluation.
Quantitative results. Following [2, 6, 14], we further re-
port the F1 metrics of the forgery localization results under
the best threshold and IOU under the fixed threshold in Ta-
ble 1, our method achieves the best F1 and IOU on most of
the test datasets and finally obtains the best average F1 and
IOU of all test datasets. It further shows the effectiveness
of our method.
Qualitative results. We illustrate qualitative results of
forgery localization on six forgery datasets shown in Fig. 3.



Methods
Editing DGM Average

CASIA1.0+ Columbia NIST16 IMD2020 DSO Korus AutoSplice OpenForensics
F1 IOU F1 IOU F1 IOU F1 IOU F1 IOU F1 IOU F1 IOU F1 IOU F1 IOU

H-LSTM [1] .204 .072 .464 .158 .184 .064 .184 .070 .300 .109 .153 .051 .578 .188 .172 .072 .280 .098
ManTra-Net∗ [25] .216 .078 .614 .248 .316 .107 .354 .120 .366 .057 .246 .069 .591 .113 .180 .024 .360 .102
HP-FCN [17] .532 .079 .389 .027 .418 .040 .382 .015 .280 .007 .395 .041 .587 .015 .377 .014 .420 .030
GSR-Net [28] .523 .194 .740 .266 .384 .172 .377 .070 .402 .037 .256 .041 .637 .029 .214 .016 .442 .103
SPAN [10] .213 .053 .541 .144 .250 .076 .264 .068 .311 .034 .179 .040 .588 .027 .184 .008 .316 .056
MVSS-Net∗ [2] .674 .397 .749 .573 .456 .239 .446 .201 .447 .188 .268 .067 .736 .241 .219 .037 .499 .243
CAT-Net [14] .501 .363 .925 .826 .453 .275 .467 .235 .367 .111 .279 .115 .597 .136 .069 .002 .457 .258
SATL-Net [30] .178 .041 .787 .595 .284 .138 .282 .104 .224 .060 .133 .026 .377 .067 .110 .012 .297 .130
PSCC-Net [18] .455 .283 .798 .554 .347 .170 .423 .217 .408 .202 .260 .104 .631 .106 .172 .038 .437 .209
HiFi-Net [7] - .063 - .264 - .121 - .114 - .193 - .054 - .486 - .088 - .173
Ours .636 .480 .938 .893 .526 .359 .629 .443 .662 .413 .383 .204 .831 .418 .277 .083 .610 .412

Table 1. Pixel-level F1 (best threshold) and IOU performance of image forgery localization. The best result is highlighted and bold. Except
for the method with ∗ uses the pre-training model of the original paper, other methods keep the same training data as our method. (Hifi-Net
uses a special threshold range when calculating the binary classification index, so we do not report F1 under the best threshold.)

Dataset Neg. Pos. Com. Spl. Inp.
#Pre-Training&Fine-tuning
Fantasitic -
Reality [12]

16,592 19,423 - 19,423 -

CASIAv2 [5] 7,491 5,123 3,295 1,828 -
#Evaluation
CASIAv1+ [5] 800 920 459 461 -
Columbia [9] 183 180 - 180 -
NIST16 [19] - 564 68 288 208
IMD2020 [20] 414 2,010 - - -
DSO-1 [4] - 100 - 100 -
Korus [13] - 220 - - -
AutoSplicing [11] 2,273 3,621 - 3,621 -
OpenForensics [16] - 18,895 - - 18,895

Table 2. The pre-training, training, and testing data used in our
experiments, the upper part of the test dataset is artificially editing
data, and the lower part is DGM data.

Our method exhibits higher accuracy and lower false alarm
rate not only in image editing forgery datasets but also in
DGM datasets, which demonstrates its good generalization
ability. Especially in subtle forgery regions, (e.g., row1,
row9-row11) the contours of forgery and authentic regions
can still be accurately localized.

3. More Robustness Analysis

To show the robustness performance of the proposed
method in a more comprehensive way, in addition to the
JPEG compression and Gaussian noise mentioned in the
main body, we also show the results against other two
widely used attacks, i.e., Gaussian blurring and Median fil-
tering, as shown in Fig. 2. It is observed that the proposed
method achieves leading performance, especially for image
forgery localization.

We also validate the robustness of our method to so-

cial media network transmissions on the four datasets, i.e.,
CASIAv1 [5], Columbia [9], DSO-1 [4] and NIST16 [19],
which have undergone social media transmission [24], and
the results are summarized in Table 3. In the upper part
of Table 3, we show the comparison results of our method
with other involved methods trained on the same experi-
mental setting in the main body, it is ready to see that our
method achieves the best forensic results on the four OSN
datasets. Since IF-OSN [24] was designed for the image
forgery localization task, for a fair comparison, we also re-
port the results by training the models with tampered data
only, as shown in the lower part of Table 3. To compare with
other IFDL methods, i.e., MVSS-Net1 [2], CAT-Net2 [14],
PSCC-Net3 [18], IF-OSN4 [24], TruFor5 [6], ReLoc6 [29],
their pre-trained models are used for testing although most
of them were trained on a larger dataset than ours. Our
method shows superior performance to other methods on
Columbia [9], DSO-1 [4] and NIST16 [19], and achieves
the best average performance. Although TruFor [6] exhibits
better performance on CASIAv1 [5], it benefits from a train-
ing dataset 36 times larger than ours.

4. More Ablation Studies
Self-supervised denoising diffusion pre-training. In this
part, we conduct additional ablation studies of several com-
ponents for the self-supervised denoising diffusion pre-
training.

1https://github.com/dong03/MVSS-Net
2https://github.com/mjkwon2021/CAT-Net
3https://github.com/proteus1991/PSCC-Net
4https://github.com/HighwayWu/ImageForensicsOSN
5https://github.com/grip-unina/TruFor Note: Tru-

For [6] uses special F1 calculations in the original paper, details of which
can be seen on (https://github.com/grip-unina/TruFor/
issues/3), and here we adopt the most commonly used calculations
in [2, 7, 14, 18, 24, 29].

6https://github.com/ZhuangPeiyu/ReLoc

https://github.com/dong03/MVSS-Net
https://github.com/mjkwon2021/CAT-Net
https://github.com/proteus1991/PSCC-Net
https://github.com/HighwayWu/ImageForensicsOSN
https://github.com/grip-unina/TruFor
https://github.com/grip-unina/TruFor/issues/3
https://github.com/grip-unina/TruFor/issues/3
https://github.com/ZhuangPeiyu/ReLoc


Methods #Data CASIA v1 Columbia DSO-1 NIST16 Average

Fb Wa Wb Wc Fb Wa Wb Wc Fb Wa Wb Wc Fb Wa Wb Wc Fb Wa Wb Wc
CAT-Net [14]

32k

.306 .300 .365 .204 .869 .859 .854 .866 .123 .095 .098 .106 .336 .300 .312 .313 .409 .389 .407 .372
SATL-Net [30] .069 .069 .063 .062 .673 .685 .674 .674 .081 .064 .077 .060 .183 .128 .182 .189 .252 .237 .249 .246
PSCC-Net [18] .108 .003 .219 .002 .628 .646 .645 .655 .312 .284 .304 .298 .229 .245 .230 .217 .319 .295 .350 .293
HiFi-Net [7] .067 .063 .083 .029 .407 .412 .384 .398 .307 .307 .294 .315 .171 .175 .172 .180 .238 .239 .233 .231
Ours .348 .350 .375 .150 .900 .899 .910 .900 .512 .526 .493 .495 .418 .415 .400 .385 .545 .548 .545 .483
MVSS-Net [2] 13k .387 .359 .404 .248 .691 .685 .689 .690 .277 .181 .258 .214 .264 .165 .251 .211 .405 .348 .401 .341
CAT-Net v1 [14] 876k .083 .066 .120 .042 .777 .769 .770 .765 .095 .033 .051 .050 .173 .071 .112 .089 .282 .235 .263 .237
CAT-Net v2 [15] 876k .011 .011 .012 .015 .887 .874 .870 .862 .077 .027 .064 .040 .251 .152 .195 .179 .307 .266 .285 .274
PSCC-Net [18] 100k .094 .079 .111 .086 .578 .563 .621 .601 .209 .214 .144 .204 .211 .154 .173 .171 .273 .253 .262 .266
IF-OSN [24] - .462 .405 .466 .478 .714 .727 .724 .727 .462 .405 .466 .478 .329 .286 .294 .313 .492 .456 .488 .499
TruFor [6] 876k .683 .674 .647 .578 .750 .748 .802 .774 .674 .389 .478 .446 .333 .384 .322 .343 .610 .549 .562 .535
ReLoc [29] 12k .578 .586 .560 .496 .707 .690 .716 .726 .330 .309 .303 .302 .312 .314 .279 .292 .482 .475 .465 .454
Ours 25k .553 .570 .560 .454 .919 .915 .916 .917 .541 .531 .521 .509 .430 .426 .426 .413 .611 .611 .606 .573

Table 3. Pixel-level F1 performance (fixed threshold) of image forgery localization on datasets uploaded on Facebook (Fb), WhatsApp
(Wa), Weibo (Wb), WeChat (Wc).

Noise Model weights Localization Detection Average
IMD2020 AutoSplicing IMD2020 AutoSplicing

Guass Simplex Encoder Decoder F1 AUC F1 AUC F1 AUC F1 AUC F1 AUC
- - Cityscapes - .438 .887 .275 .861 .831 .715 .635 .882 .545 .836
✓ - DDPM DDPM .425 .885 .498 .935 .725 .682 .597 .901 .561 .851
✓ - Cityscapes DDPM .488 .910 .289 .880 .831 .737 .522 .899 .533 .857
- ✓ DDPM DDPM .438 .877 .425 .851 .763 .666 .432 .843 .515 .809
- ✓ Cityscapes DDPM .519 .907 .399 .917 .819 .757 .571 .924 .577 .876

Table 4. For IFDL tasks, the performance of different weight settings for denoising diffusion pre-training using Simplex noise and Gaussian
noise for encoder and decoder structures.
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Figure 2. Robustness against Gaussian Blurring and Median Fil-
tering effects. Tested on CASIA1.0+, Columbia, IMD2020 and
AutoSplicing. Our method achieves a substantial lead in tamper
localization performance.

Firstly, to comprehensively explore the impact of our
proposed scheme that combines the macro-features and
micro-features for the IFDL task, we additionally adopted
pre-trained weights of the encoder on another semantic seg-

Pre-Training Localization Detection Average

Neg. Pos. F1 AUC F1 AUC F1 AUC
1 0 .342 .860 .639 .848 .491 .854
0 1 .422 .896 .741 .834 .582 .865

1/4 1/4 .385 .896 .672 .832 .529 .864
1/2 1/2 .453 .912 .781 .847 .617 .880
3/4 3/4 .395 .913 .749 .821 .572 .867
1 1 .509 .925 .760 .846 .635 .886

Table 5. Performance of different types and amounts of the pre-
training data. Tested on IMD2020 and AutoSplicing.

mentation dataset (i.e., Cityscapes [3]), and showed the re-
sults in Table 4. Similar to the case of using pre-trained
weights on ADE20K [27], our proposed training scheme
of combining macroscopic features with supervised weights
and using simplex noise for denoising diffusion pre-training
to obtain microscopic features can effectively boost the per-
formance for IFDL task. Furthermore, we can observe that
the macroscopic feature weights pre-trained by ADE20K
can better improve the performance of the IFDL task be-
cause the image contents of the ADE20K dataset are closer
to the ones in widely used tampered image datasets.

Secondly, we investigate the impact of the types of pre-



training data, including real-image-only data, tampered-
image-only data, and the combination of real and tam-
pered image data. As shown in the 1st, 2nd, and last row
of Table 5, the performance of the model by training on
real-image-only dataset is the worst, while the performance
of the model increases considerably with tampered-image-
only dataset. And the model performance can be further
boosted with the combination of real and tampered image
data. Furthermore, we investigate the impact of the amount
of pre-training data. As shown in the last 4 rows of Ta-
ble 5, with the increase of the amount of pre-training data,
the overall performance of the model in detection and local-
ization is getting better. It indicates that more suitable data
during self-supervised pre-training could encourage Diff-
Forensics to better learn tampering micro-features.

References
[1] Jawadul H Bappy, Cody Simons, Lakshmanan Nataraj, BS

Manjunath, and Amit K Roy-Chowdhury. Hybrid lstm and
encoder–decoder architecture for detection of image forg-
eries. IEEE Transactions on Image Processing, 28(7):3286–
3300, 2019. 2

[2] Xinru Chen, Chengbo Dong, Jiaqi Ji, Juan Cao, and Xirong
Li. Image manipulation detection by multi-view multi-scale
supervision. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 14185–14193, 2021.
1, 2, 3

[3] Marius Cordts, Mohamed Omran, Sebastian Ramos, Timo
Rehfeld, Markus Enzweiler, Rodrigo Benenson, Uwe
Franke, Stefan Roth, and Bernt Schiele. The cityscapes
dataset for semantic urban scene understanding. In Proceed-
ings of the IEEE conference on computer vision and pattern
recognition, pages 3213–3223, 2016. 3
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Figure 3. Qualitative localization evaluations on six standard test datasets. From top to bottom, row1-row2: CASIA1.0+ [5], row3-row6:
AutoSplicing [11], row7-row8: Columbia [9], row9-row10: IMD2020 [20], row11: NIST16 [19], row12: DSO-1 [4], row13: Korus [13],
row14-row15: Openforensics [16].
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