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1. Dataset Details001

In this work, we validate the effectiveness of our meth-002
ods using two datasets for UHD image enhancement. The003
UHD-LOL4K [7] dataset consists of 5999 paired training004
images and another 2100 paired test images. The 4KIL [4]005
dataset contains 1040 paired images, where we randomly006
select 940 images as the training dataset and the remaining007
100 images are used for testing.008

2. More Implementation Details009

2.1. Pre-training Details010

Our object is to establish the collaborative interplay be-011
tween the resizers and existing enhancement models. We012
begin by training baseline models on the above two datasets.013
For all the baselines, we utilize the commonly adopted014
encoder-decoder architecture with skip connections, incor-015
porating two times downsampling and upsampling within016
the backbone, as shown in Figure 1. The downsampling is017
achieved using a convolution layer with a stride of 2, while018
the upsampling is implemented using a transposed convolu-019
tion layer. The pre-training process is based on the PyTorch020
framework with one NVIDIA 3090 GPU. To demonstrate021
the scalability and robustness of our methods, we pre-train022
three different backbones, including the CNN-I model on023
the UHD-LOL4K dataset, the CNN-H model on the 4KIL024
dataset, and the Restormer model on the 4KIL dataset. For025
the CNN-I model, the inner processing module is the in-026
vertible block proposed by [5]. For the CNN-H model, the027
inner processing module is the half instance normalization028
block proposed by [1]. The channel number is set to 64029
for all the processing modules. For the Restormer model,030
we follow the default modules as proposed by [8] but with031
small channel numbers. Specifically, the number of trans-032
former blocks is [2, 3, 3], the number of heads is [1, 2, 4],033
the number of channels is [16, 32, 64]. During pre-training,034
we adopted the Adam [3] optimizer with β1 = 0.9 and035
β2 = 0.999 for parameter optimization. For these two CNN036
models, we crop patch size of 1024× 1024 for training and037

the batch size is set to 4. The training epochs are 100 for 038
CNN-I and 30 for CNN-H. The initial learning rate is set 039
to 1e−3 and 6e−4 for the CNN-I and CNN-H respectively, 040
which decays by a factor value of 0.75 every 20 epochs and 041
10 epochs correspondingly. With regard to the Restormer 042
backbone, we use a patch size of 768×768 and a batch size 043
of 1 for training. The total training epoch is set to 30, and 044
the initial learning rate is 5e−4 with a decay of 0.75 every 045
10 epochs. The mean absolute error is used for pre-training. 046

P
ro

ce
ss

 U
n

it

D
o

w
n

P
ro

ce
ss

 U
n

it

D
o

w
n

P
ro

ce
ss

u
p

P
ro

ce
ss

 U
n

it

u
p

P
ro

ce
ss

 U
n

it

C
o

n
vo

lu
ti

o
n

C
o

n
vo

lu
ti

o
n

Backbone

Figure 1. The architecture of the CNN backbone. The inside pro-
cessing unit can be any module, where we utilize the invertible
block and half instance block in our implementations.

2.2. Collaborative Training Details 047

In this stage, we aim to facilitate the collaboration between 048
the resizer and enhancer via customizing resampling under 049
the guidance of model knowledge. The overview of this 050
process is depicted in Figure 2. It is important to note 051
that the trainable parameters only consist of two convolu- 052
tion layers and one MLP, where the MLP is accelerated by 053
tiny-cuda-nn [6]. The convolution layers are equipped with 054
1× 1 kernels, a stride of 1, and no padding. For the CNN-I 055
model, the MLP contains five hidden layers, each contain- 056
ing 128 neurons, and employing LeakyRelu as the activa- 057
tion function. For the CNN-H model, the MLP contains six 058
hidden layers, each containing 128 neurons, and employing 059
LeakyRelu as the activation function. For the Restormer, 060
the MLP contains five hidden layers, each containing 128 061
neurons, and employing Tanh as the activation function. For 062
the discriminator, the inner basic processing unit is the con- 063
volution layers followed by the LeakyRelu activation func- 064
tion. The convolution layers are equipped with 4×4 kernels, 065
a stride of 2, and a padding size of 1. 066
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Figure 2. Overview of the proposed LMAR. The sub-graph (a) depicts the training phase of LMAR, which encourages the compensated
low-resolution input to maintain representation consistency with the full-resolution UHD input as perceived by the enhancer. The sub-
graph (b) demonstrates the inference pipeline of our LMAR, where the compensated low-resolution input is directly fed into the enhancer
and then upsampled to the UHD result. The sub-graph (c) illustrates how LMAR works, where the core lies in estimating compensatory
kernels under the guidance of model knowledge to make up for the resampling process.

3. Extension on Low-resolution Dataset067

In addition to the previously mentioned two UHD image068
enhancement datasets, we also assessed the effectiveness069
of our method using the low-resolution LOL [2] dataset.070
We utilize the synthetic dataset from the LOLv2 version for071
training and testing, where 900 paired images are used for072
training and 100 images for testing. Similarly, we first train073
an enhancer and then correlate the enhancer with the resizer.074
We retrain the CNN-I on this dataset for 45 epochs with a075
patch size of 256×256 and batch size of 4. The initial learn-076
ing rate is 5e−4, which decays by a factor value of 0.75 ev-077
ery 15 epochs. For the collaborative training phase, we also078
employ the random scale training strategy on a patch size079
of 256 × 256. The training epoch is set to 90 and a batch080
size of 1. The initial learning rate is 2e−4, which decays081
by a factor value of 0.75 every 30 epochs. Since the test082
image size is 384 × 384, we make the test on these three083
downsampling scales, including 192× 192, 160× 240, and084
128 × 128. We employ two types of resizers to demon-085
strate the results, including the bicubic and the lanczos3.086
As shown in Table 1, our method consistently achieved per-087
formance improvements across different resampling scales088
on this low-resolution dataset. It verifies the robustness and089
scalability of our designs.090

Table 1. Quantitative results on the LOL datasets with CNN-I as
the backbone. The results with LMAR are shown in gray with
better results highlighted in bold.

Scales (384, 384) (192, 192) (160, 240) (128, 128)

cubic
21.95 / 0.8907 20.48 / 0.8536 20.42 / 0.8340 19.42 / 0.7552
21.95 / 0.8906 20.54 / 0.8583 20.50 / 0.8344 19.59 / 0.7582

lanczos3
21.95 / 0.8907 20.40 / 0.8563 20.34 / 0.8313 19.35 / 0.7489
21.94 / 0.8907 25.49 / 0.8582 20.46 / 0.8335 19.53 / 0.7564

4. Additional Visual Comparison 091

In this section, we will present more visual comparison re- 092
sults on the UHD-LOL4K dataset and the 4KIL dataset, in- 093
cluding the downscaled representations comparison and the 094
final enhanced UHD results comparison. 095

5. Further Investigations 096

Our method encounters limitations in handling extremely 097
dark conditions, which could be explored in the future. Ad- 098
ditionally, while our method focuses on customizing resam- 099
pling by spatial domain compensation, the exploration of 100
correlating interpolation resampler and enhancement mod- 101
els in the frequency domain remains unexplored, which 102
presents an intriguing avenue for further investigation. 103
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(f ) (2160, 3840)

Figure 3. Downscaled representation comparison on the UHD-LOL4K dataset over different scales. The difference is magnified by four
times. Please zoom in for details.
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Figure 4. Qualitative results on the UHD-LOL4k dataset of different scales. The top one is obtained from the cubic operator without
LMAR, while the bottom one is with LMAR. Please zoom in for details.
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Figure 5. Downscaled representation comparison on the UHD-LOL4K dataset over different scales. The difference is magnified by four
times. Please zoom in for details.
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Figure 6. Qualitative results on the UHD-LOL4k dataset of different scales. The top one is obtained from the cubic operator without
LMAR, while the bottom one is with LMAR. Please zoom in for details.
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Figure 7. Downscaled representation comparison on the UHD-LOL4K dataset over different scales. The difference is magnified by four
times. Please zoom in for details.
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Figure 8. Qualitative results on the UHD-LOL4k dataset of different scales. The top one is obtained from the cubic operator without
LMAR, while the bottom one is with LMAR. Please zoom in for details.
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Figure 9. Downscaled representation comparison on the 4KIL dataset over different scales. The difference is magnified by four times.
Please zoom in for details.
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Figure 10. Qualitative results on the 4KIL dataset of different scales. The top one is obtained from the cubic operator without LMAR,
while the bottom one is with LMAR. Please zoom in for details.
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