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In this supplementary document, we first present abla-
tion studies of Mip-Splatting in Section 1. Next, we report
additional quantitative and quality results in Section 3.

1. Ablation
In this section, we evaluate the effectiveness of our 3D
smoothing filter and 2D Mip filter in Section 1.1 and Sec-
tion 1.2. Then, we present an additional experiment to eval-
uate both zoom-in and zoom-out effects in the same dataset
in Section 1.3.

1.1. Effectiveness of the 3D Smoothing Filter

To evaluate the effectiveness of the 3D smoothing filter, we
conduct an ablation with the single-scale training and multi-
scale testing setting to simulate zoom-in effects in the Mip-
NeRF 360 dataset [3]. The quantitative result is presented
in Table 1. Omitting the 3D smoothing filter results in high-
frequency artifacts when rendering higher resolution image,
as depicted in Figure 1. Excluding the 2D Mip filter causes
a slight decline in performance as this filter’s role is mainly
for mitigating zoom-out artifacts, as we will shown next.
The absence of both the 3D smoothing filter and the 2D
Mip filter leads to an excessive generation of small Gaussian
primitives, due to the density control mechanism, resulting
in out of memory error even on an A100 GPU with 40GB
memory. Hence, we don’t report the result.

1.2. Effectiveness of the 2D Mip Filter

To evaluate the effectiveness of the 2D Mip filter, we per-
form an ablation study with the single-scale training and
multi-scale testing setting to simulate zoom-out effects in
the Blender dataset [10]. The quantitative results are shown
in Table 2. Upon removing the dilation operation from
3DGS [9] (3DGS - Dilation), the dilation effects are elim-
inated, outperforming 3DGS in this context. However, it
also results in aliasing artifacts due to a lack of anti-aliasing.
Mip-Splatting outperforms all baseline methods by a large

margin. Removing the 2D Mip filter results in a notable
decline in performance, validating its critical role in anti-
aliasing. Without the 3D smoothing filter, it still produces
alias-free rendering as the 3D filter aims at addressing the
high-frequency artifacts when zooming in.

1.3. Single-scale Training and Multi-scale Testing

In the main paper, we evaluate the zoom-out effects by ren-
dering lower resolution images on the Blender dataset [10]
following [2, 8] and simulating the zoom-in effects by
rendering higher resolution images on the Mip-NeRF 360
dataset [3]. Here we present an addition experiment evalu-
ating both zoom-out and zoom-in effects on the Mip-NeRF
360 dataset [3]. We use the images downsampled by a
factor of 4 for training and evaluate it at multiple resolu-
tions (1/4×, 1/2×, 1×, 2×, 4×). The quantitative results
are presented in Table 3 and the qualitative comparison is
shown in Figure 2. Mip-Splatting significantly outperforms
3DGS [9] and 3DGS + EWA [16] in rendering quality when
zooming in and out, which is consistent to our main re-
sults. Further, removing our 3D smoothing filter leads to
high-frequency artifacts, while removing our 2D Mip-filter
results in aliasing artifacts, as evidenced in Figure 2.

2. Relation with Airy disk and 2D Mip filter
The Airy disk is a result of diffraction in optical systems.
It describes how a point light in the scene is blurred by
the imaging system before being recorded by the sensor.
It represents the smallest area in the image (or maximum
frequency in the scene) that can be resolved as a distinct
feature [12]. In other words, it determines the smallest the-
oretical “pixel” in the image [1].

A pixel integrates over all incoming light rays that fall
onto the pixel area and hence acts as a “2D box filter”. In
contrast to the Airy disk which is defined by the camera
lens, the pixel size is determined by the image sensor. For
the datasets (e.g., Mip-NeRF 360) and downsampling rate
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3DGS [9] 3DGS [9] + EWA [16] Ours w/o 3D smoothing filter Ours w/o 2D Mip filter Mip-Splatting (ours) GT

Figure 1. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [3]. All models are trained on images down-
sampled by a factor of 8 and rendered at full resolution to demonstrate zoom-in/moving closer effects. Removing the 3D smoothing filter
results in high-frequency artifacts. Mip-Splatting renders images that closely approximate ground truth. Zoom in for a better view.

PSNR ↑ SSIM ↑ LPIPS ↓
1× Res. 2× Res. 4× Res. 8× Res. Avg. 1× Res. 2× Res. 4× Res. 8× Res. Avg. 1× Res. 2× Res. 4× Res. 8× Res. Avg.

3DGS [9] 29.19 23.50 20.71 19.59 23.25 0.880 0.740 0.619 0.619 0.715 0.107 0.243 0.394 0.476 0.305
3DGS [9] + EWA [16] 29.30 25.90 23.70 22.81 25.43 0.880 0.775 0.667 0.643 0.741 0.114 0.236 0.369 0.449 0.292
Mip-Splatting (ours) 29.39 27.39 26.47 26.22 27.37 0.884 0.808 0.754 0.765 0.803 0.108 0.205 0.305 0.392 0.252
Mip-Splatting (ours) w/o 3D smoothing filter 29.41 27.09 25.83 25.38 26.93 0.881 0.795 0.722 0.713 0.778 0.107 0.214 0.342 0.424 0.272
Mip-Splatting (ours) w/o 2D Mip filter 29.29 27.22 26.31 26.08 27.23 0.882 0.798 0.742 0.759 0.795 0.107 0.214 0.319 0.407 0.262

Table 1. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [3]. All methods are trained on the smallest scale
(1×) and evaluated across four scales (1×, 2×, 4×, and 8×), with evaluations at higher sampling rates simulating zoom-in effects. While
our method yields comparable results at the training resolution, it significantly surpasses all previous work at all other scales. Omitting the
3D smoothing filter results in high-frequency artifacts when rendering higher resolution image as shown in 1, while the excluding the 2D
Mip filter only causes a slight decline in performance as this filter’s role is mainly for mitigating zoom-out artifacts.



PSNR ↑ SSIM ↑ LPIPS ↓
Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res. Avg. Full Res. 1/2 Res. 1/4 Res. 1/8 Res Avg.

3DGS [9] 33.33 26.95 21.38 17.69 24.84 0.969 0.949 0.875 0.766 0.890 0.030 0.032 0.066 0.121 0.063
3DGS [9] + EWA [16] 33.51 31.66 27.82 24.63 29.40 0.969 0.971 0.959 0.940 0.960 0.032 0.024 0.033 0.047 0.034
3DGS [9] - Dilation 33.38 33.06 29.68 26.19 30.58 0.969 0.973 0.964 0.945 0.963 0.030 0.024 0.041 0.075 0.042
Mip-Splatting (ours) 33.36 34.00 31.85 28.67 31.97 0.969 0.977 0.978 0.973 0.974 0.031 0.019 0.019 0.026 0.024
Mip-Splatting (ours) w/o 3D smoothing filter 33.67 34.16 31.56 28.20 31.90 0.970 0.977 0.978 0.971 0.974 0.030 0.018 0.019 0.027 0.024
Mip-Splatting (ours) w/o 2D Mip filter 33.51 33.38 29.87 26.28 30.76 0.970 0.975 0.966 0.946 0.964 0.031 0.022 0.039 0.073 0.041

Table 2. Single-scale Training and Multi-scale Testing on the Blender Dataset [10]. All methods are trained on full-resolution images
and evaluated at four different (smaller) resolutions, with lower resolutions simulating zoom-out effects. While Mip-Splatting yields
comparable results at training resolution, it significantly surpasses previous work at all other scales. Removing the 2D Mip filter results in a
notable decline in performance at lower resolutions, validating its critical role in anti-aliasing. Removing the 3D smoothing filter achieves
similar performance since the 3D filter aims at addressing the high-frequency artifacts when zooming in.
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Figure 2. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [3]. All methods are trained at 1× resolution and
evaluated at different resolutions to mimic zoom-out (1/4× and 1/2×) and zoom-in (2× and 4×). Mip-Splatting surpasses both 3DGS [9]
and 3DGS + EWA [16] across different resolutions. Removing 3D smoothing filter leads to high-frquency artifacts when zooming in, while
omitting 2D Mip filter results in aliasing artifacts when zooming out.

(4x) we consider in our experiments, the Airy disk is smaller
than the pixel size and hence does not play a significant role.

Modeling the Airy disk or PSF is a promising future
direction, especially when using high resolution images
where the diffraction limits are reached. In this case, a
more accurate model of the imaging process might lead to
more accurate reconstructions. However, additional model

parameters might also lead to an increase in optimization
overhead. Note that other factors such as focus accuracy,
motion blur and imperfect lenses also affect the results [1].

3. Additional Results

In this section, we provide more qualitative and quantitative
results on the Blender dataset [10] in Section 3.1 and the



PSNR ↑ SSIM ↑ LPIPS ↓
1/4 Res. 1/2 Res. 1× Res. 2× Res. 4× Res. Avg. 1/4 Res. 1/2 Res. 1× Res. 2× Res. 4× Res. Avg. 1/4 Res. 1/2 Res. 1× Res. 2× Res. 4× Res. Avg.

3DGS [9] 20.85 24.66 28.01 25.08 23.37 24.39 0.681 0.812 0.834 0.766 0.735 0.765 0.203 0.158 0.166 0.275 0.383 0.237
3DGS [9] + EWA [16] 27.40 28.39 28.09 26.43 25.30 27.12 0.888 0.871 0.833 0.774 0.738 0.821 0.103 0.126 0.171 0.276 0.385 0.212
Mip-Splatting (ours) 28.98 29.02 28.09 27.25 26.95 28.06 0.908 0.880 0.835 0.798 0.800 0.844 0.086 0.114 0.168 0.248 0.331 0.189
Mip-Splatting (ours) w/o 3D smoothing filter 28.69 28.94 28.05 27.06 26.61 27.87 0.905 0.879 0.833 0.790 0.780 0.837 0.088 0.115 0.168 0.261 0.359 0.198
Mip-Splatting (ours) w/o 2D Mip filter 26.09 28.04 28.05 27.27 27.00 27.29 0.815 0.856 0.834 0.798 0.802 0.821 0.167 0.132 0.167 0.249 0.335 0.210

Table 3. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [3]. All methods are trained on the middle
scale (1×) and evaluated across four scales (1/4×, 1/2×, 1×, 2×, and 4×), with evaluations at higher sampling rates simulating zoom-in
effects. While our method yields comparable results at the training resolution, it significantly surpasses all previous work at all other scales.
Omitting the 3D smoothing filter results in high-frequency artifacts when rendering higher resolution images, while removing the 2D Mip
filter results in aliasing artifacts when rendering lower resolution images, as shown in Figure 2.

Mip-NeRF 360 dataset [3] in Section 3.2.

3.1. Blender Dataset

We evaluate Mip-Splatting under two different settings in
the Blender dataset [10]. For multi-scale training and multi-
scale testing, the quantitative results are compiled in Ta-
ble 4, where Mip-Splatting achieves state-of-the-art per-
formance. Additionally, per-scene metrics for single-scale
training and multi-scale testing are presented in Table 5. A
qualitative comparison against leading methods is shown in
Figure 3. Mip-Splatting outperforms both 3DGS [9] and
3DGS + EWA [16], particularly noticeable when zooming
out, i.e. at lower resolutions.

3.2. Mip-NeRF 360 Dataset

We further evaluate Mip-Splatting on the Mip-NeRF 360
dataset [3] across two experimental setups. In the first setup,
we follow the standard approach where models are trained
and evaluated at the same scale, with indoor scenes down-
sampled by a factor of two and outdoor scenes by four.
Quantitative results with per-scene metrics are shown in Ta-
ble 6, our method performs on par with 3DGS [9] and 3DGS
+ EWA [16] in this challenging benchmark, without any de-
crease in performance.

In the second setup, models are trained on data down-
sampled by a factor of 8 and rendered at successively higher
resolutions (1×, 2×, 4×, and 8×) to simulate zoom-in ef-
fects. The quantitative results with per-scene metrics can
be found in Table 7. Qualitative comparison with state-of-
the-art methods are provided in Figure 4. Mip-Splatting ef-
fectively eliminates high-frequency artifacts, yielding high
quality renderings that more closely resemble ground truth.
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PSNR
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea [2, 10] 29.92 23.27 27.15 32.00 27.75 26.30 28.40 26.46 27.66
NeRF [10] 33.39 25.87 30.37 35.64 31.65 30.18 32.60 30.09 31.23
MipNeRF [2] 37.14 27.02 33.19 39.31 35.74 32.56 38.04 33.08 34.51
Plenoxels [7] 32.79 25.25 30.28 34.65 31.26 28.33 31.53 28.59 30.34
TensoRF [5] 32.47 25.37 31.16 34.96 31.73 28.53 31.48 29.08 30.60
Instant-ngp [13] 32.95 26.43 30.41 35.87 31.83 29.31 32.58 30.23 31.20
Tri-MipRF [8]* 37.67 27.35 33.57 38.78 35.72 31.42 37.63 32.74 34.36
3DGS [9] 32.73 25.30 29.00 35.03 29.44 27.13 31.17 28.33 29.77
3DGS [9] + EWA [16] 35.77 27.14 33.65 37.74 32.75 30.21 35.21 31.63 33.01
Mip-Splatting (ours) 37.48 27.74 34.71 39.15 35.07 31.88 37.68 32.80 34.56

SSIM
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea [2, 10] 0.944 0.891 0.942 0.959 0.926 0.934 0.958 0.861 0.927
NeRF [10] 0.971 0.932 0.971 0.979 0.965 0.967 0.980 0.900 0.958
MipNeRF [2] 0.988 0.945 0.984 0.988 0.984 0.977 0.993 0.922 0.973
Plenoxels [7] 0.968 0.929 0.972 0.976 0.964 0.959 0.979 0.892 0.955
TensoRF [5] 0.967 0.930 0.974 0.977 0.967 0.957 0.978 0.895 0.956
Instant-ngp [13] 0.971 0.940 0.973 0.979 0.966 0.959 0.981 0.904 0.959
Tri-MipRF [8]* 0.990 0.951 0.985 0.988 0.986 0.969 0.992 0.929 0.974
3DGS [9] 0.976 0.941 0.968 0.982 0.964 0.956 0.979 0.910 0.960
3DGS [9] + EWA [16] 0.986 0.958 0.988 0.988 0.979 0.972 0.990 0.929 0.974
Mip-Splatting (ours) 0.991 0.963 0.990 0.990 0.987 0.978 0.994 0.936 0.979

LPIPS
chair drums ficus hotdog lego materials mic ship Average

NeRF w/o Larea [2, 10] 0.035 0.069 0.032 0.028 0.041 0.045 0.031 0.095 0.052
NeRF [10] 0.028 0.059 0.026 0.024 0.035 0.033 0.025 0.085 0.044
MipNeRF [2] 0.011 0.044 0.014 0.012 0.013 0.019 0.007 0.062 0.026
Plenoxels [7] 0.040 0.070 0.032 0.037 0.038 0.055 0.036 0.104 0.051
TensoRF [5] 0.042 0.075 0.032 0.035 0.036 0.063 0.040 0.112 0.054
Instant-ngp [13] 0.035 0.066 0.029 0.028 0.040 0.051 0.032 0.095 0.047
Tri-MipRF [8]* 0.011 0.046 0.016 0.014 0.013 0.033 0.008 0.069 0.026
3DGS [9] 0.025 0.056 0.030 0.022 0.038 0.040 0.023 0.086 0.040
3DGS [9] + EWA [16] 0.017 0.039 0.013 0.016 0.024 0.026 0.011 0.070 0.027
Mip-Splatting (ours) 0.010 0.031 0.009 0.011 0.012 0.018 0.005 0.059 0.019

Table 4. Multi-scale Training and Multi-scale Testing on the the Blender dataset [10]. For each scene, we report the arithmetic mean
of each metric averaged over the 4 scales used in the dataset.
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PSNR
chair drums ficus hotdog lego materials mic ship Average

NeRF [10] 31.99 25.31 30.74 34.45 30.69 28.86 31.41 28.36 30.23
MipNeRF [2] 32.89 25.58 31.80 35.40 32.24 29.46 33.26 29.88 31.31
TensoRF [5] 32.17 25.51 31.19 34.69 31.46 28.60 31.50 28.71 30.48
Instant-ngp [13] 32.18 25.05 31.32 34.85 31.53 28.59 32.15 28.84 30.57
Tri-MipRF [8] 32.48 24.01 28.41 34.45 30.41 27.82 31.19 27.02 29.47
3DGS [9] 26.81 21.17 26.02 28.80 25.36 23.10 24.39 23.05 24.84
3DGS [9] + EWA [16] 32.85 24.91 31.94 33.33 29.76 27.36 27.68 27.41 29.40
Mip-Splatting (ours) 35.69 26.50 32.99 36.18 32.76 30.01 31.66 29.98 31.97

SSIM
chair drums ficus hotdog lego materials mic ship Average

NeRF [10] 0.968 0.936 0.976 0.977 0.963 0.964 0.980 0.887 0.956
MipNeRF [2] 0.974 0.939 0.981 0.982 0.973 0.969 0.987 0.915 0.965
TensoRF [5] 0.970 0.938 0.978 0.979 0.970 0.963 0.981 0.906 0.961
Instant-ngp [13] 0.970 0.935 0.977 0.980 0.969 0.962 0.982 0.909 0.961
Tri-MipRF [8] 0.971 0.908 0.957 0.975 0.957 0.953 0.975 0.883 0.947
3DGS [9] 0.915 0.851 0.921 0.930 0.882 0.882 0.909 0.827 0.890
3DGS [9] + EWA [16] 0.978 0.942 0.983 0.977 0.964 0.958 0.963 0.912 0.960
Mip-Splatting (ours) 0.988 0.958 0.988 0.987 0.982 0.974 0.986 0.930 0.974

LPIPS
chair drums ficus hotdog lego materials mic ship Average

NeRF [10] 0.040 0.067 0.027 0.034 0.043 0.049 0.035 0.132 0.053
MipNeRF [2] 0.033 0.062 0.022 0.025 0.030 0.041 0.023 0.092 0.041
TensoRF [5] 0.036 0.066 0.027 0.030 0.035 0.052 0.034 0.102 0.048
Instant-ngp [13] 0.036 0.074 0.035 0.030 0.035 0.054 0.034 0.096 0.049
Tri-MipRF [8] 0.026 0.086 0.041 0.023 0.036 0.048 0.023 0.117 0.050
3DGS [9] 0.047 0.087 0.055 0.034 0.064 0.055 0.046 0.113 0.063
3DGS [9] + EWA [16] 0.023 0.051 0.017 0.018 0.033 0.027 0.024 0.077 0.034
Mip-Splatting (ours) 0.014 0.035 0.012 0.014 0.016 0.019 0.015 0.066 0.024

Table 5. Single-scale Training and Multi-scale Testing on the the Blender dataset [10]. For each scene, we report the arithmetic mean
of each metric averaged over the four scales used in the dataset.



PSNR
bicycle flowers garden stump treehill room counter kitchen bonsai

NeRF [6, 10] 21.76 19.40 23.11 21.73 21.28 28.56 25.67 26.31 26.81
mip-NeRF [2] 21.69 19.31 23.16 23.10 21.21 28.73 25.59 26.47 27.13
NeRF++ [15] 22.64 20.31 24.32 24.34 22.20 28.87 26.38 27.80 29.15
Plenoxels [7] 21.91 20.10 23.49 20.661 22.25 27.59 23.62 23.42 24.67
Instant NGP [13, 14] 22.79 19.19 25.26 24.80 22.46 30.31 26.21 29.00 31.08
mip-NeRF 360 [3, 11] 24.40 21.64 26.94 26.36 22.81 31.40 29.44 32.02 33.11
Zip-NeRF [4] 25.80 22.40 28.20 27.55 23.89 32.65 29.38 32.50 34.46
3DGS [9] 25.25 21.52 27.41 26.55 22.49 30.63 28.70 30.32 31.98
3DGS [9]* 25.63 21.77 27.70 26.87 22.75 31.69 29.08 31.56 32.29
3DGS [9] + EWA [16] 25.64 21.86 27.65 26.87 22.91 31.68 29.21 31.59 32.51
Mip-Splatting (ours) 25.72 21.93 27.76 26.94 22.98 31.74 29.16 31.55 32.31

SSIM
bicycle flowers garden stump treehill room counter kitchen bonsai

NeRF [6, 10] 0.455 0.376 0.546 0.453 0.459 0.843 0.775 0.749 0.792
mip-NeRF [2] 0.454 0.373 0.543 0.517 0.466 0.851 0.779 0.745 0.818
NeRF++ [15] 0.526 0.453 0.635 0.594 0.530 0.852 0.802 0.816 0.876
Plenoxels [7] 0.496 0.431 0.606 0.523 0.509 0.842 0.759 0.648 0.814
Instant NGP [13, 14] 0.540 0.378 0.709 0.654 0.547 0.893 0.845 0.857 0.924
mip-NeRF 360 [3, 11] 0.693 0.583 0.816 0.746 0.632 0.913 0.895 0.920 0.939
Zip-NeRF [4] 0.769 0.642 0.860 0.800 0.681 0.925 0.902 0.928 0.949
3DGS [9] 0.771 0.605 0.868 0.775 0.638 0.914 0.905 0.922 0.938
3DGS [9]* 0.777 0.622 0.873 0.783 0.652 0.928 0.916 0.933 0.948
3DGS [9] + EWA [16] 0.777 0.620 0.871 0.784 0.655 0.927 0.916 0.933 0.948
Mip-Splatting (ours) 0.780 0.623 0.875 0.786 0.655 0.928 0.916 0.933 0.948

LPIPS
bicycle flowers garden stump treehill room counter kitchen bonsai

NeRF [6, 10] 0.536 0.529 0.415 0.551 0.546 0.353 0.394 0.335 0.398
mip-NeRF [2] 0.541 0.535 0.422 0.490 0.538 0.346 0.390 0.336 0.370
NeRF++ [15] 0.455 0.466 0.331 0.416 0.466 0.335 0.351 0.260 0.291
Plenoxels [7] 0.506 0.521 0.3864 0.503 0.540 0.419 0.441 0.447 0.398
Instant NGP [13, 14] 0.398 0.441 0.255 0.339 0.420 0.242 0.255 0.170 0.198
mip-NeRF 360 [3, 11] 0.289 0.345 0.164 0.254 0.338 0.211 0.203 0.126 0.177
Zip-NeRF [4] 0.208 0.273 0.118 0.193 0.242 0.196 0.185 0.116 0.173
3DGS [9] 0.205 0.336 0.103 0.210 0.317 0.220 0.204 0.129 0.205
3DGS [9]* 0.205 0.329 0.103 0.208 0.318 0.192 0.178 0.113 0.174
3DGS [9] + EWA [16] 0.213 0.335 0.111 0.210 0.325 0.192 0.179 0.113 0.173
Mip-Splatting (ours) 0.206 0.331 0.103 0.209 0.320 0.192 0.179 0.113 0.173

Table 6. Single-scale Training and Single-scale Testing on the Mip-NeRF 360 dataset [3]. Indoor scenes are downsampled by a factor
of 2 and outdoor scenes by 4.



PSNR
bicycle flowers garden stump treehill room counter kitchen bonsai

Instant-NGP [13] 22.51 20.25 24.65 23.15 22.24 29.48 26.18 27.10 29.66
mip-NeRF 360 [3] 24.21 21.60 25.82 25.59 22.78 22.95 27.72 28.78 31.63
zip-NeRF [4] 23.05 20.05 18.07 23.94 22.53 20.51 26.08 27.37 30.05
3DGS [9] 21.34 19.43 21.94 22.63 20.91 28.10 25.33 23.68 25.89
3DGS [9] + EWA [16] 23.74 20.94 24.69 24.81 21.93 29.80 27.23 27.07 28.63
Mip-Splatting (ours) 25.26 22.02 26.78 26.65 22.92 31.56 28.87 30.73 31.49

SSIM
bicycle flowers garden stump treehill room counter kitchen bonsai

Instant-NGP [13] 0.538 0.473 0.647 0.590 0.544 0.868 0.795 0.764 0.877
mip-NeRF 360 [3] 0.662 0.567 0.716 0.715 0.628 0.795 0.845 0.828 0.910
zip-NeRF [4] 0.640 0.521 0.548 0.661 0.590 0.655 0.784 0.800 0.865
3DGS [9] 0.638 0.536 0.675 0.662 0.591 0.878 0.826 0.789 0.838
3DGS [9] + EWA [16] 0.671 0.563 0.718 0.693 0.608 0.889 0.843 0.813 0.874
Mip-Splatting (ours) 0.738 0.613 0.786 0.776 0.659 0.921 0.897 0.903 0.933

LPIPS
bicycle flowers garden stump treehill room counter kitchen bonsai

Instant-NGP [13] 0.500 0.486 0.372 0.469 0.511 0.270 0.310 0.286 0.229
mip-NeRF 360 [3] 0.358 0.400 0.296 0.333 0.391 0.256 0.228 0.210 0.182
zip-NeRF [4] 0.353 0.397 0.346 0.349 0.366 0.302 0.277 0.232 0.236
3DGS [9] 0.336 0.406 0.295 0.353 0.406 0.223 0.239 0.245 0.242
3DGS [9] + EWA [16] 0.322 0.395 0.281 0.334 0.405 0.217 0.231 0.216 0.227
Mip-Splatting (ours) 0.281 0.373 0.233 0.281 0.369 0.193 0.199 0.165 0.176

Table 7. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 dataset [3]. All models are trained on images downsam-
pled by a factor of 8 and rendered at higher resolutions to simulates zoom-in effects.
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Mip-NeRF [2] Tri-MipRF [8] 3DGS [9] 3DGS [9] + EWA [16] Mip-Splatting (ours) GT

Figure 3. Single-scale Training and Multi-scale Testing on the Blender Dataset [10]. All methods are trained at full resolution and
evaluated at different (smaller) resolutions to mimic zoom-out. Methods based on 3DGS capture fine details better than Mip-NeRF [2] and
Tri-MipRF [8] at training resolution. Mip-Splatting surpasses both 3DGS [9] and 3DGS + EWA [16] at lower resolutions.



Mip-NeRF 360 [3] Zip-NeRF [4] 3DGS [9] 3DGS [9] + EWA [16] Mip-Splatting (ours) GT

Figure 4. Single-scale Training and Multi-scale Testing on the Mip-NeRF 360 Dataset [3]. All models are trained on images down-
sampled by a factor of eight and rendered at full resolution to demonstrate zoom-in/moving closer effects. In contrast to prior work,
Mip-Splatting renders images that closely approximate ground truth. Please also note the high-frequency artifacts of 3DGS + EWA [16].
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