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A. Proof of Theorem 1
Theorem 1. With τ as Unique Pose-Normalization by PCA
and F as Point Position Predictor, Ψ(P) is equivariant un-
der SE(3) transformation of P .

To prove this theorem, the notations are firstly intro-
duced, based on which we present Lemma 1 on the unique-
ness of our proposed Unique Pose-Normalization τ . We
then present Lemma 2 to prove the invariance of τ(P). Fi-
nally we prove the equivariance of Ψ(P).

Notations. Given point cloud P with point position XP ∈
RN×3, velocity VP ∈ RN×3, attribute H ∈ RN×d and
edge attribute E, we only need to prove that Ψ(P) is equiv-
ariant under SE(3) transformation of XP , VP . The point
attribute H and edge attribute E are both invariant under
SE(3) transformation of P . Let Q = g(P), ∀g ∈ SE(3),
and Q is a transformed point cloud from P with its point
position and velocity as XQ = XPR + T , VQ = VPR,
where R ∈ R3×3 and T ∈ R3×1 are rotation matrix and
translation vector respectively.

Lemma 1. The singular vector matrix computed by Unique
Pose-Normalization τ is uniquely determined with only one
direction for every singular vector.

Proof. The singular vector matrix U is composed with three
singular vectors {u1, u2, u3} corresponding to the largest
three singular values sorted in descending order. Both ui

and −ui can be taken as singular vectors. In our unique
pose-normalization τ , we determine the singular vector di-
rections, with the uniqueness proven as follows.

We estimate the angle between ui, i = 1, 2, 3 with a
predefined anchor point y (e.g., the farthest point from cen-
troid). The direction of ui should be flipped if the cor-
responding angle is larger than 90◦. That is, we select
the singular vector ui with the inner product ⟨ui, y⟩ ≥ 0.
If ⟨ui, y⟩ > 0, we take ui as the singular vector. If
⟨ui, y⟩ < 0, we take −ui as the singular vector which sat-
isfies ⟨−ui, y⟩ > 0. If ⟨ui, y⟩ = 0, both ui and −ui satisfy
the condition ⟨ui, y⟩ ≥ 0, which means they can both be
taken as the singular vectors. In order to prevent this un-
certainty, we take another point y′ (e.g., the second farthest
point from centroid) that satisfies ⟨ui, y

′⟩ ̸= 0 as new an-
chor point to determine the singular vector direction.

By this strategy, the directions of all the three singular
vectors are uniquely determined, and the singular vector
matrix U is uniquely determined.

Lemma 2. The uniquely pose-normalized point cloud τ(P)
is invariant under SE(3) transformation of P .

Proof. We prove this lemma by proving τP (P) = τQ(Q)
in three steps, with τP , τQ as unique pose-normalization of
P,Q respectively.
Step1. Denote the center points of XP , XQ as µ, ν respec-
tively, we prove the relationship between µ and ν in this
step, i.e., ν = µR + T . The center points µ and ν are re-
spectively computed by
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N
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i=1
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1

N

N∑
i=1

qi, (1)

with pi, qi as elements of XP , XQ. Recalling that XQ =
XPR+ T , qi = piR+ T , we have
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=
1

N

N∑
i=1

(piR+ T )

= (
1

N

N∑
i=1

pi)R+ T

= µR+ T .

(2)

Step2. In this step, we prove the relationship between
singular vector matrices of centralized point clouds, i.e.,
UQ = R

⊤
UP . Denote the singular vector decomposition

utilized in our unique pose-normalization as

UPΛPU
⊤
P = SVD[(XP − µ)⊤(XP − µ)],

UQΛQU
⊤
Q = SVD[(XQ − ν)⊤(XQ − ν)].

(3)

By Step 1 we have ν = µR+ T , and it is obvious

XQ − ν = XPR+ T − ν

= XPR+ T − (µR+ T )

= XPR− µR

= (XP − µ)R.

(4)

Note that R is a rotation matrix, and Eqn. (4) means that
XQ − ν is an orthogonal transformation of XP − µ. Con-
sidering that ΛP and ΛQ are singular values computed by
Eqn. (3), and orthogonal transformation do not change the



singular values, we have ΛP = ΛQ. On the other hand,
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which means UQΛQU
⊤
Q = (R

⊤
UP )ΛQ(U

⊤
P R) holds for

any rotation matrix R. By Lemma 1, UP and UQ are

uniquely determined, so we have UQ = R
⊤
UP .

Step3. We finally prove the invariance of point position
and velocity for the uniquely pose-normalized point cloud
in this step. Recalling that the normalized point positions of
P,Q are respectively computed by (XP − µ)UP , (XQ −
ν)UQ, and with the conclusion of Step 1-2 we have

(XQ − ν)UQ ={XPR+ T − (µR+ T )}R⊤
UP

=(XP − µ)UP .
(6)

Above equation proves the invariance of point position
for the uniquely pose-normalized point cloud. On the
other hand, the velocities of uniquely pose-normalized
point clouds for P,Q are respectively computed as
VPUP , VQUQ, and the invariance is derived by

VQUQ = VQR
⊤
UP = VPUP . (7)

By Eqns. (6-7), we derive the invariance of point posi-
tion and velocity for the uniquely pose-normalized point
cloud. With the invariant point attribute and edge attribute,
we finally arrive at τP (P) = τQ(Q), i.e., the uniquely
pose-normalized point cloud τ(P) is invariant under SE(3)
transformation of point cloud P .

Proof of Theorem 1. The equivariance of Ψ(P) is proven
as follows.

Proof. Denote the predicted point position, velocity of F ◦
τP (P) / Ψ(P) as {X ′

P , V
′
P } / {X∗

P , V
∗
P } respectively, de-

note the predicted point position, velocity of F ◦ τQ(Q) /
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′
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∗
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the definition of Ψ, τ−1
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(8)

On the other hand, by Lemma 2 we have τP (P) = τQ(Q)
and F ◦ τP (P) = F ◦ τQ(Q), which means
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According to Steps 1-2 of Lemma 2, ν = µR + T , UQ =

R
⊤
UP , therefore

X∗
Q = X ′

QU
⊤
Q + ν

= X ′
P (R

⊤
UP )

⊤ + µR+ T

= X ′
PU

⊤
P R+ µR+ T

= (X ′
PU

⊤
P + µ)R+ T

= X∗
PR+ T ,

V ∗
Q = V ′

QU
⊤
Q

= V ′
P (R

⊤
UP )

⊤

= V ′
PU

⊤
P R

= V ∗
PR.

(10)

With above equations, we have X∗
Q = X∗

PR + T , V ∗
Q =

V ∗
PR, which means the equivariance of Ψ(P) for P under

SE(3) transformation.

B. Algorithm of Global-Local Motion Estima-
tion Layer (Φ)
The operations in Global-Local Motion Estimation layer
(Φ) are summarized in Algorithm 1 as follows.

Algorithm 1: Global-Local Motion Estimation
Input: Point cloud with point position X , velocity

V , attribute H , and edge attribute E.
Output: Point position X ′ and attribute H ′.

1 Decompose global/local components by Eqn.(10)
and learn global/local attribute by Eqn.(11).

2 for i← 1 to NS do
3 Update global displacement ∆xg by Eqn.(12).
4 Update local displacement ∆xl

i by Eqn.(13).
5 Update global/local attribute hg/hl

i by Eqn.(14).
6 end
7 Compose position X ′ and attribute H ′ by Eqn.(15).

C. Details on Network and Training
Details on network architecture. We design PT-EvNet
with three pose-transformed points prediction blocks fΓ in
the point position predictor F . In each block, we set NK =
4 pose transformations to transform the pose-normalized
point cloud. In the global-local motion estimation layer
Φ, we take NS = 4 iterations to estimate global and lo-
cal displacements. In the global-local motion estimation
layer Φ, the functions of κ, β, ζ, η are all set as two-layer
MLPs with output as three-dimensional vector, and ξ, ρ, γ
are set as two-layer MLPs to learn 64-dimensional attribute.
All the MLPs take 64-dimensional hidden neurons with
SiLU as non-liner activation function. For PT-EvNet on
CMU dataset, the MLPs in the Updating step including



κ, β, ζ, η, ξ, γ all take batch-normalization (BN) layer be-
fore the SiLU layer, while for networks on the MD17 and
Simulation dataset, there is no BN utilized.
Details on network training. PT-EvNet is trained by
Adam optimizer with Mean Squared Error (MSE) loss be-
tween the predicted point position and ground truth point
position, and we set the batch-size to 12. On CMU and
MD17 datasets, the learning rate and weight decay are set
as 4e−4, 1e−12 respectively. On the Simulation dataset, we
set them as 4e−4, 1e−4. All the networks are trained with
early stopping of 50 epochs. We utilize the same codes
as [3]1, [4]2, [7]3 for data pre-processing and data loading,
and for the MD17 dataset we ignore particles with charges
less than 1 as in GMN [4]. The velocity is calculated as the
difference between adjacent frames. For the data that con-
tains one trajectory sequence for one human / molecules /
particle, the unique pose-normalization is computed on the
first frame of the trajectory, and applied to all the frames in
the trajectory.

D. Visualization of Learned Transformations

In this section, we visualize the learned transformations in
PR-EvNet. Given one point (in black) with its position as
[1, 1, 1], we utilize the learned rotation in Γ = {τk|k =
1, ..., 8} in PT-EvNet to transform it, and display the trans-
formed points (in different colors) in Figure 1. Subfig-
ures (a-c) show the points with transformations learned on
CMU, MD17 and Simulation dataset respectively, and these
transformed points have different distributions. In every
subfigure, the transformed points are highlighted with dif-
ferent colors for transformations learned on different sub-
sets, which also differ across these subsets. There is more
significant variation in the learned transformations on sub-
sets of Simulation dataset.

(a) CMU (b) MD17 (c) Simulation

Anchor Point
Trans. Points on Walking
Trans. Points on Running

Anchor Point
Trans. Points on Aspirin
Trans. Points on Benzene
Trans. Points on Ethanol

Anchor Point
Trans. Points on (3,3,1)
Trans. Points on (5,5,1)
Trans. Points on (3,3,5)

Figure 1. Illustration of learned pose transformations for CMU,
MD17 and Simulation datasets. For the given anchor (black) point,
the learned transformations transform it to different points across
different dataset.

1https://github.com/hanjq17/EGHN
2https://github.com/hanjq17/GMN
3https://github.com/vgsatorras/egnn

E. Visualization of Points Prediction Progress

In this section, we first visualize the points prediction
progress in our PT-EvNet on Walking dataset. In Fig-
ure 2 (a), we show the predicted points (in green/magenta
/cyan) after three Pose-Transformed Points Prediction
Blocks fΓ, together with the input points (in red) and tar-
get points (ground truth, in blue). As illustrated in this sub-
figure, the predicted points within PT-EvNet move to the
target ones step by step, with every block predicts a step
of point motion. In every block of our PT-EvNet, the point
motion is predicted from multiple pose-transformed point
clouds, whose point-wise motions are estimated iteratively
by Global-Local Motion Estimation Layer Φ. In subfig-
ures (b-d), we present the point displacements in Φ for the
first pose-transformed point cloud. As shown in these sub-
figures, the points move forward gradually, which agrees to
our iterative displacement updating strategy in Φ. In subfig-
ures (e-g), (h-j), (k-m), we display the predicted motion in
Φ for other pose-transformed point clouds, and the points
gradually move forward. We further present the points pre-
diction progress in Figure 3 for the Benzene dataset, which
exhibits similar phenomenons.

F. Details of Network Architectures in Table 5

Table 5 of the paper presents the results of modified PT-
EvNet that replaces the Global-Local Motion Estimation
Layer Φ with other motion prediction operations. These
operations include Linear layer, MLP, and layers utilized
in SOTA models, e.g., MPNN[2], EGNN[7], GMN[4] and
EGHN[3]. The modified networks are respectively named
as PT-EvNet-linear, PT-EvNet-mlp, PT-EvNet-mpnn, PT-
EvNet-egnn, PT-EvNet-gmn, PT-EvNet-eghn.

For PT-EvNet-linear, we set the motion prediction layer
as fully connected layer. Specifically, for pose-transformed
point cloud, we concatenate the point position, attribute, ve-
locity as input, and feed it to a fully connected layer for
the attribute updating. Then the output is sent to SiLU and
a fully connected layer for point displacement prediction.
The displacement are added to the point position as esti-
mation of the point positions. For PT-EvNet-mlp, we take
the same architecture except that we replace the fully con-
nected layers with two-layer MLPs. These MLPs have 64-
dimensional hidden neurons and take SiLU as non-liner ac-
tivation function.

For PT-EvNet-mpnn, PT-EvNet-egnn, PT-EvNet-gmn
and PT-EvNet-eghn, we utilize the basic motion prediction
layers (from codes of [3],[4],[7]) to estimate point motion
for the pose-transformed point cloud. Specifically, we first
utilize a two-layer MLP to learn point attribute, taking the
concatenation of point position, attribute, velocity as input.
This MLP has 64-dimensional hidden neurons and takes
SiLU as non-liner activation function. Then we feed the
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(e)Predicted motion in 1st block (Pose 2)

(h) Predicted motion in 1st block (Pose 3)

(k) Predicted motion in 1st block (Pose 4)

(f) Predicted motion in 2nd block (Pose 2) (g) Predicted motion in 3rd block (Pose 2)

(i) Predicted motion in 2nd block (Pose 3) (j) Predicted motion in 3rd block (Pose 3)

(l) Predicted motion in 2nd block (Pose 4) (m) Predicted motion in 3rd block (Pose 4)

Figure 2. Visualization of points prediction progress in PT-EvNet on Walking dataset. Subfigure (a) displays the predicted points by the
three pose-transformed points prediction blocks fΓ (in green/magenta/cyan), as well as the input points (in red) and target points (ground
truth, in blue). In every block, the points are predicted from multiple pose-transformed point clouds. Subfigures (b,e,h,k) present the points
prediction progress in the first block of fΓ on four pose-transformed point clouds. Subfigures (c,f,i,l) and subfigures (d,g,j,m) show the
points prediction progress in the second and third blocks respectively. In every subfigure of (b-m), the points are iteratively updated.

point position, velocity, attribute, and edge attribute as input
to four of their motion prediction layers to estimate point
position and attributes. These estimations are aggregated
by Eqns.(8-10) in the paper as our PT-EvNet.

G. Details of Compared Networks in Table 6
Table 6 of the paper presents the computational cost of
MPNN [2], RF [5], TFN [8], SE(3)-Tr. [1], EGNN [7],
GMN [4], EGHN [3], EqMotion [9], FA-GNN [6]. When
reporting the computational cost, we utilize the hyper-
parameters specified in the codes of [3], [4], [7] to tune the
networks. For EqMotion [9]4, we set the parameter Frame
Length as 1 to keep same setting as PT-EvNet, i.e., pre-

4https://github.com/MediaBrain-SJTU/EqMotion

dicting one future frame taking one history frame as in-
put. For our PT-EvNet, we take the hyper-parameters de-
scribed in Sect. C. i.e., we utilize three pose-transformed
points prediction blocks fΓ, and in each block we set NK =
4 pose transformations to transform the pose-normalized
point cloud. In the global-local motion estimation layer Φ,
we take NS = 4 iterations to estimate global and local dis-
placements. The batch size, learning rate, weight decay are
set as 12, 4e−4, 1e−12 respectively.
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