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Abstract

Domain generalization aims to solve the challenge of
Out-of-Distribution (OOD) generalization by leveraging
common knowledge learned from multiple training domains
to generalize to unseen test domains. To accurately evaluate
the OOD generalization ability, it is required that test data
information is unavailable. However, the current domain
generalization protocol may still have potential test data
information leakage. This paper examines the risks of test
data information leakage from two aspects of the current
evaluation protocol: supervised pretraining on ImageNet
and oracle model selection. We propose modifications to
the current protocol that we should employ self-supervised
pretraining or train from scratch instead of employing the
current supervised pretraining, and we should use multiple
test domains. These would result in a more precise eval-
uation of OOD generalization ability. We also rerun the
algorithms with the modified protocol and introduce new
leaderboards to encourage future research in domain gen-
eralization with a fairer comparison.

1. Introduction

The performance of traditional machine learning algorithms
heavily depends on the assumption that the training and test
data are independent and identically distributed (IID). How-
ever, in wild environments, the test distribution often differs
significantly from the training distribution. This mismatch
can lead to spurious correlations, ultimately causing the ma-
chine learning models to perform poorly and become unsta-
ble. Unfortunately, this limitation severely hinders the use
of machine learning in high-risk domains like autonomous
driving [27, 38], medical treatment [36], and law [4].

In recent years, there has been a growing interest among
researchers in addressing the Out-of-Distribution (OOD)
generalization problem, where the IID assumption does not
stand [66, 83]. This issue is addressed by various branches
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of research, such as invariant learning [1, 13, 34, 49, 50],
distributionally robust optimization [17, 51, 52, 67, 75], sta-
ble learning [14, 23, 35, 65, 78, 82], and domain general-
ization [42, 76, 87, 94, 95]. Of these, domain generaliza-
tion assumes the heterogeneity of training data. Specifi-
cally, domain generalization attempts to learn common or
causal knowledge from multiple training domains to de-
velop a model capable of generalizing to unseen test data.

Despite a quantity of interesting and instructive works in
domain generalization, previously they do not have a com-
mon standard training and evaluation protocol. Aware of
this problem, DomainBed [19] proposes a framework for
the hyperparameter search and model selection of domain
generalization. It also sets a standard for experimental de-
tails like the model backbone, data split, data augmenta-
tion, etc. This unifies the protocol of domain generaliza-
tion for subsequent works to follow. Nevertheless, conflicts
remain between the current standard protocol and the ac-
curate and reliable evaluation of OOD generalization abil-
ity. Since domain generalization is depicted as the ability to
learn a model from diverse training domains that can gener-
alize to unseen/unknown test data [76, 95], we should try
to mitigate possible test data information leakage for a more
precise evaluation of the OOD generalization ability.

In the current protocol, two key factors show the poten-
tial risk of test data information leakage. We make two rec-
ommendations for fairer and more accurate evaluation.

Recommendation 1 Domain generalization algorithms
should adopt self-supervised pretrained weights or random
weights as initialization when evaluated and compared with
each other.

Most domain generalization algorithms take advantage of
ImageNet supervised pretrained weights [15, 19] for bet-
ter performance and faster convergence. Yet this introduces
the information on both images and category labels in Im-
ageNet, which may bear a resemblance to the test domain.
Through comprehensive experiments, we demonstrate that
more utilization of supervised pretrained weights and less
utilization of training data can contribute to higher test do-



main performance under many common settings of domain
generalization. This reveals that the ImageNet supervised
pretrained weights may play a leading role in the test do-
main performance. Thus the accurate evaluation of OOD
generalization is violated since the test domain performance
does not really come from the generalization from training
domains to test domains, for which most domain general-
ization algorithms are designed, but from the utilization of
the supervised pretrained weights. We also demonstrate that
when a test domain is quite similar to the ImageNet dataset,
such a phenomenon becomes most evident while it does not
occur if the test domain is rather different from ImageNet.
This further confirms the test data information leakage.

To address such an issue, it is safest to train from scratch
to purely evaluate domain generalization. However, on one
hand, with the remarkable development and broad applica-
tion of pretrained models these days [5, 60], it is too lim-
ited and not common practice to train from scratch in real
applications without benefiting from pretraining. On the
other hand, most of commonly used domain generalization
datasets like PACS [39] and VLCS [30] are not large enough
to support training from scratch. Thus we investigate dif-
ferent pretrained methods and model backbones towards a
set of pretrained weights with which there is less test data
information leakage and we can still conduct a relatively
accurate evaluation of OOD generalization. Based on our
experimental findings, we suggest that self-supervised pre-
trained weights are a good alternative.

Recommendation 2 Domain generalization algorithms
should be evaluated on multiple test domains.

For each trained model, domain generalization algorithms
are typically evaluated on a single test domain. Before Do-
mainBed, the choice of hyperparameters is not well spec-
ified, and there is a chance that model selection is con-
ducted with the help of test data, i.e., the oracle model se-
lection [19]. This can introduce information leakage from
the test data and undermine the validity of the evaluation.
Even following the standard protocol of DomainBed, such a
possibility still exists since the search space of hyperparam-
eters could be pre-selected with the information of oracle
data and fixed apriori for the DomainBed model selection
pipeline. Moreover, the ultimate goal of domain general-
ization is to develop models that can generalize well to a
wide range of unseen domains in real-world applications
instead of tuning a set of hyperparameters for one single
test domain. The current protocol allows models to select
different hyperparameters for each test domain, which may
not reflect the real-world scenario and could be inconsis-
tent with the original purpose of domain generalization [90].
We suggest that we should evaluate algorithms on multiple
test domains for each trained model since we empirically

demonstrate that by doing so, the potential leakage from or-
acle model selection can be greatly mitigated.

New leaderboards Based on the aforementioned recom-
mendations, we have conducted a re-evaluation of ten rep-
resentative domain generalization algorithms following the
revised protocol and presented three sets of new leader-
boards. For ResNet50 [21] that is employed in the cur-
rent protocol, we provide leaderboards with MoCo-v2 [10]
pretraining across all commonly used datasets, and leader-
boards with no pretraining on large-scale datasets like Do-
mainNet [59] and NICO++ [90]. In addition, to support
comparisons on more advanced network architectures like
vision transformers, we also provide leaderboards for ViT-
B/16 [16] with MoCo-v3 [12] pretraining. Combined with
our previous analyses, the change in rankings of algorithms
between the new leaderboard and the old one also implies
that we are taking risks to improperly evaluate and rank ex-
isting methods with the current evaluation protocol. We be-
lieve the revised protocol and the leaderboards will stim-
ulate future research in the field of domain generalization
with more precise evaluation.

2. Rethinking the Evaluation Protocol
In this section, we will rethink the current evaluation proto-
col through comprehensive experimental analyses. First we
review the definition of domain generalization.

Definition 1 (Domain Generalization) Given M differ-
ent training domains {S1, S2, ..., SM} where Sj =

{x(j)
i , y

(j)
i }nj

i=1 is sampled from Pj(X,Y ). The goal is to
learn a function f that predicts well on the unseen test do-
main Ste. Ste should be different from the M training do-
mains. With l denoting the loss function, the optimization
target is:

minfE(x,y)∼Pte
[l(f(x), y)] (1)

Since the test domain is required to be unseen [76, 95],
we should try to decrease the potential risk of leaking test
data information to accurately evaluate the OOD general-
ization ability of algorithms.

Although DomainBed has established a standard proto-
col for researchers of domain generalization to follow, there
are still some defects hindering the accurate and fair eval-
uation of OOD generalization ability. Specifically, Defi-
nition 1 does not explicitly address the use of pretrained
weights, and the optimization target Equation 1 is defined
for a single test domain Pte. We will discuss these issues in
detail in the following sections.

We briefly introduce the domain generalization bench-
mark datasets we will use in our experiments.



Table 1. Results of linear-probing (LP) and fine-tuning (FT) with
supervised pretrained ResNet-50 on commonly used domain gen-
eralization datasets.

PACS P A C S Avg

LP 97.7±0.1 71.8±1.6 53.8±1.8 45.9±1.7 67.3±0.3
FT 97.4±0.1 86.1±0.9 80.4±1.4 77.1±2.5 85.3±0.6

VLCS V L C S Avg

LP 77.2±1.6 58.1±0.6 97.4±0.4 71.4±1.1 76.0±0.6
FT 73.5±1.5 66.3±0.9 96.9±1.1 71.7±1.5 77.1±1.0

OfficeHome A C P R Avg

LP 64.0±0.4 50.3±0.3 77.7±0.5 79.7±0.2 67.9±0.2
FT 61.1±0.6 51.1±0.3 73.9±0.5 75.7±0.7 65.5±0.2

TerraInc L38 L43 L46 L100 Avg

LP 43.4±5.4 36.6±0.9 32.4±0.9 37.9±0.2 37.6±1.7
FT 43.2±2.4 56.1±0.2 38.4±5.7 54.8±5.9 48.1±3.1

• PACS [39]: consists of 4 domains to depict the distribu-
tion shift as a change of style: photo, art painting, car-
toon, sketch. It comprises 9,991 samples with 7 classes.

• VLCS [30]: is collected from 4 different datasets corre-
sponding to four domains: Pascal VOC 2007, LabelMe,
Caltech, SUN09. It contains 10,729 real photo examples
with 5 common classes. It depicts the distribution shift
with dataset bias.

• OfficeHome [74]: comprises 4 domains: art, clipart,
product, real, with 65 classes and 15,588 examples. It
also depicts the style transfer.

• Terra Incognita [3]: comprises 4 domains: L38, L43, L46,
L100, with 10 classes and 24,788 examples. Its distri-
bution shift is characterized by different locations when
taking photos.

• DomainNet [59]: comprises 6 domains: clipart, info-
graph, painting, quickdraw, real, sketch, also character-
ized by style shift. It is a relatively large dataset with
586,575 samples and 345 classes in total.

• NICO++ [90]: comprises 6 publicly available domains:
autumn, rock, dim, grass, outdoor, water. This part con-
tains 88,866 examples with 60 classes. It is also a rel-
atively large dataset that controls the distribution shift
through the change of background contexts.

2.1. Pretraining

When the most widely used domain generalization bench-
mark dataset PACS is released [39], the authors proposed a
baseline ”Deep-All”, an AlexNet [33] supervised pretrained
on ImageNet and optimized using ERM [73]. To ensure
comparability with prior research, subsequent studies have
consistently followed this practice, even as the backbone
architecture has evolved from AlexNet [39] to ResNet-18
[6, 25, 56, 57] and more recently to ResNet-50 [7, 19, 61].
It is worth noting that bringing in extra knowledge beyond
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Figure 1. Test domain accuracy with the growing number of frozen
layers when using ImageNet pretrained weights. Test domains in-
clude PASCAL from VLCS, Art and Real from OfficeHome, and
Real from DomainNet.

training data may have a potential negative effect of test
data information leakage, hurting the accurate evaluation of
OOD generalization. For instance, VLCS [30], TerraInc [3]
and NICO++ [90] comprise entirely real photos, which re-
semble the pretrained dataset ImageNet. Similarly, some
domains in PACS [39], OfficeHome [74], and DomainNet
[59] also include real photos that share similar character-
istics with ImageNet. When using these data as test do-
mains, there could be potential leakage of test data infor-
mation from the pretrained weights.

Table 2. Relationship between dissimilarity of pretrained data and
test domains, and the phenomenon of LP outperforming FT. The
”Gap” is calculated as AccLP−AccFT

AccFT
.

PACS P A C S

Gap 0.004 -0.167 -0.331 -0.405
FID 103.75 128.07 148.52 209.68

OfficeHome A C P R

Gap 0.047 -0.017 0.051 0.054
FID 62.22 92.33 78.26 56.96

To confirm our concerns, we conduct experiments by
comparing the effect of pretrained weights and training data
on the test domain performance. We basically follow the
protocol of DomainBed [19] with an ImageNet supervised
pretrained ResNet-50. We compare two paradigms: LP and
FT. LP stands for linear-probing where only the last layer is
updated. In real applications where the cost of fine-tuning
the whole network is too high to be afforded, LP is used
to save computational resources and guarantee the general-
ization ability to some extent. FT stands for fine-tuning the



whole network. In general, LP relies more on the pretrained
features and FT relies more on the fine-tuned training data.
For both LP and FT, we employ the standard ERM to fine-
tune models on the data of training domains. In traditional
computer vision tasks, if the training data is sufficient for
the network to be trained, FT is expected to yield supe-
rior results as compared to LP, as it is better equipped to
leverage the training data [9, 11]. However, as evident from
Tab. 1, LP performs comparably with FT under many set-
tings, in some of which simple LP even just outperforms
FT. For VLCS and OfficeHome, LP outperforms FT or per-
forms comparably with LP across almost all settings. For
PACS, when using real photos as the test domain, LP out-
performs FT. For TerraInc, LP also outperforms FT in the
domain L38. Such a phenomenon can also be observed in
DomainNet and NICO++, which is left in Appendix B.1.
As LP only updates the last layer, it strongly relies on the
pretrained weights to generalize on the test domains, while
FT relies more on the training domains and less on the
pretrained weights than LP. The above results imply that
the test domain performance under many settings is mostly
attributed to the information from the pretrained weights
rather than the information from the training data.

In order to further investigate the phenomenon that
LP outperforms FT, we vary the number of frozen layers
in ResNet-50, which we consider as a 4-layer structure.
Specifically, we fine-tune the network by freezing the first
1, 2, and 3 layers, respectively. Fig. 1 shows that as the
number of frozen layers increases, indicating higher utiliza-
tion of pretrained weights and lower utilization of training
domain data, the test domain accuracies also increase. Be-
sides, we calculate Fréchet Inception Distance (FID) [24]
between some domains and ImageNet in Tab. 2 and find
that in most cases, a smaller FID is accompanied by a larger
value of AccLP−AccFT

AccFT
, where AccLP and AccFT represent

the corresponding test accuracy. This implies that the phe-
nomenon of LP outperforming FT can really serve as evi-
dence of test data information leakage, i.e. a higher similar-
ity of pretrained data to test data.

These findings raise concerns about the fairness of com-
paring different algorithms with the existence of test data
information leakage from supervised pretrained weights. If
an algorithm can improve the utilization of the pretrained
weights instead of the true OOD generalization ability from
training domains to test domains (e.g. in some settings,
simple LP already brings higher improvement than many
domain generalization algorithms), it may generate compa-
rable or even better test domain performance than the al-
gorithms that are better at true OOD generalization. To
solve this issue, the safest choice is to train from scratch
when evaluating domain generalization algorithms. Never-
theless, as pretrained models have achieved rapid growth
in recent years, pretraining is commonly used to improve

Table 3. Results of linear-probing (LP) and fine-tuning (FT) with
different pretraining methods of different backbone architectures
on OfficeHome.

OfficeHome A C P R Avg

ResNet-18 Supervised LP 57.4±0.3 46.0±0.2 71.3±0.2 74.5±0.3 62.3±0.1
FT 50.8±0.5 46.5±1.1 67.4±0.4 69.2±0.4 58.5±0.3

ResNet-50

Supervised LP 64.0±0.4 50.3±0.3 77.7±0.5 79.7±0.2 67.9±0.2
FT 61.1±0.6 51.1±0.3 73.9±0.5 75.7±0.7 65.5±0.2

MoCo LP 27.5±0.6 17.3±0.1 32.8±0.3 40.1±0.6 29.4±0.2
FT 45.3±0.7 36.9±1.1 62.4±0.8 64.2±0.1 52.2±0.6

MoCo-v2 LP 41.5±0.4 25.3±0.2 49.9±0.4 56.7±0.2 43.4±0.1
FT 49.6±2.7 45.2±2.0 65.8±1.3 68.6±0.2 57.3±0.3

SimCLR LP 9.7±0.2 7.9±0.0 12.6±0.3 17.0±0.3 11.8±0.1
FT 24.6±0.6 26.3±1.5 44.3±1.0 41.7±0.6 34.2±0.4

SimCLR-v2 LP 6.3±0.3 5.8±0.2 7.5±0.2 10.2±0.2 7.5±0.1
FT 42.9±2.7 43.9±1.8 63.3±0.7 64.9±0.4 53.8±0.3

ViT-B/16
Supervised LP 72.7±0.4 57.0±0.2 82.7±0.1 83.8±0.1 74.1±0.1

FT 71.1±1.2 59.1±0.6 80.6±0.9 83.3±0.4 73.5±0.5

MoCo-v3 LP 63.1±0.3 38.8±0.2 69.1±0.3 73.0±0.3 61.0±0.2
FT 64.7±0.6 54.1±0.5 74.8±0.7 78.3±0.7 68.0±0.4

performance without incurring additional time or financial
costs. It is somewhat limited to evaluate algorithms by train-
ing from scratch which may lead to a large gap between
evaluation and real-world model deployment.

Therefore, we explore alternatives of pretraining that
mitigate the risk of leakage, from perspectives of backbone
architectures and pretraining methods. For changing back-
bone architectures, we conduct experiments with super-
vised pretrained ResNet-18 and ViT-B/16 [16]. For chang-
ing pretraining methods, we try several self-supervised pre-
training including MoCo [22], MoCo-v2 [10], SimCLR [8],
SimCLR-v2 [9] for ResNet-50, and MoCo-v3 [12] for ViT-
B/16. From results in Tab. 3 that take OfficeHome as an
example, we find that after changing from ResNet-50 to
ResNet-18 (decreasing model capacity) or ViT-B/16 (in-
creasing model capacity), the phenomenon of LP outper-
forming FT still exists. However, by changing from su-
pervised pretraining to self-supervised pretraining, the phe-
nomenon of LP outperforming FT disappears, for both
ResNet-50 and ViT-B/16. Similar observations are made
for other datasets, which we leave in Appendix B.2. These
results demonstrate that changing model architectures does
not help, but changing to self-supervised pretraining greatly
helps in mitigating potential risks of test data information
leakage. Since self-supervised pretraining only utilizes im-
ages compared with supervised pretraining utilizing both
images and category labels, these results adhere to our intu-
ition that self-supervised pretraining may bear less leakage.

Overall, we suggest that we should use self-supervised
pretrained weights or train from scratch to mitigate the po-
tential risk of test information leakage for fairer evaluation.

2.2. Oracle Model Selection

Model selection has emerged as a crucial problem for OOD
generalization. In the context of IID generalization, training



Table 4. Results of increasing the number of test domains for mit-
igating test information leakage from oracle model selection for
DomainNet and NICO++.

DomainNet quickdraw real sketch Avg leakage

IID 11.09 60.75 47.98 39.94 0.00 /

Oracle
K=1 11.42 62.57 48.30 40.76 0.82 -0%
K=2 10.95 62.54 48.03 40.51 0.57 -31%
K=3 10.81 62.54 48.07 40.47 0.53 -35%

DomainNet clipart infograph painting Avg leakage

IID 58.23 19.20 47.49 41.64 0.00 /

Oracle
K=1 58.23 19.23 47.67 41.71 0.07 -0%
K=2 58.19 19.22 47.67 41.69 0.05 -24%
K=3 58.15 19.23 47.67 41.68 0.04 -38%

NICO++ grass outdoor water Avg leakage

IID 80.10 74.69 68.06 74.28 0.00 /

Oracle
K=1 81.19 75.58 69.85 75.54 1.26 -0%
K=2 80.54 74.98 69.85 75.12 0.84 -33%
K=3 80.47 75.58 68.97 75.01 0.72 -42%

NICO++ autumn rock dim Avg leakage

IID 78.94 79.26 71.94 76.71 0.00 /

Oracle
K=1 79.44 79.58 72.58 77.20 0.49 -0%
K=2 78.92 79.33 72.58 76.94 0.23 -53%
K=3 79.44 79.58 71.42 76.81 0.10 -79%

data, validation data, and test data are typically drawn from
the same distribution, so the generalization performances on
validation data and test data are generally consistent. How-
ever, in the case of domain generalization, test distribution
differs from training distribution. Since test data should be
unknown, naturally the validation data should also come
from the same distribution as training data does, thus the
consistency between validation data performance and test
data performance cannot be guaranteed. When evaluating
on public benchmarks, despite not being reasonable, it is
possible to exploit test data for hyperparameter tuning and
model selection, referred to as ”oracle” model selection.
This serves as another form of test data information leak-
age. DomainBed [19] has proved that such an oracle model
selection method outperforms the standard model selection
strategy that utilizes a validation set sampled from the same
distribution as training data. While DomainBed has inte-
grated the validation process into the framework to reduce
the possibility of using test data, there are still some degrees
of freedom. For example, the hyperparameter search space
can be customized and narrowed in order to reduce the com-
putational cost of the evaluation process (In the current stan-
dard protocol of DomainBed, each setting randomly gener-
ates 20 hyperparameter sets for 3 random seeds each, lead-
ing to the requirement of training 60 models).

To further address this issue, we observe that the cur-
rent protocol of domain generalization, as defined by Equa-

tion 1, only considers a single test domain for each trained
model. Though the test domain varies across different set-
tings, it is fixed for a single setting. For example, when
evaluating on DomainNet with domains real and clipart,
we do not directly train a single model for the two set-
tings with each domain treated as the test domain. Instead,
we train two separate models using different training data
comprising domains other than the test domain. The two
hyperparameter search and model selection processes are
also performed independently for each model. As there is
only one test domain, the room for increasing the test per-
formance through oracle model selection is relatively large.
Intuitively, using oracle model selection to ”fit” the distribu-
tion of multiple test domains is usually harder than ”fit” the
distribution of a single test domain. Thus we consider in-
troducing multiple test domains to alleviate the test data in-
formation leakage from the oracle model selection method.

We conduct experiments to confirm the above intuition.
We adopt DomainNet and NICO++ due to their relatively
larger number of domains. We split the domains of each
dataset into two groups. For DomainNet, we split them
into (quickdraw, real, sketch) and (clipart, infograph, paint-
ing). For NICO++, we split them into (grass, outdoor, wa-
ter) and (autumn, rock, dim). For each dataset, we train on
each group respectively and test on the other group. Val-
idation data is randomly split from training data. For IID
model selection, we choose the test accuracy correspond-
ing to the hyperparameters with the highest accuracy on
validation data. For oracle model selection, we directly
choose the highest test accuracy across all hyperparame-
ter sets. We vary the number of test domains K and com-
pute the test accuracy of each test domain through the av-
erage of its accuracy across every combination of K test
domains that includes this test domain. For example, for
the domain autumn belonging to the group (autumn, rock,
dim), for K = 2, we calculate the average of domain au-
tumn’s accuracy when using (autumn, rock) and (autumn,
dim) for oracle model selection respectively. We quantify
the difference in test accuracy between IID model selec-
tion and oracle model selection as the possible ”leakage”.
Tab. 4 shows that increasing the number of test domains
does help mitigate the possible leakage from oracle model
selection. For DomainNet, when K = 2, the leakage can
already be reduced by about 30 percent. For NICO++, the
leakage can be reduced by about half when increasing K.
If there are datasets that can support the evaluation of more
test domains, such leakage can be further reduced. Overall,
we recommend using multiple test domains to alleviate the
possible information leakage from oracle model selection.

3. New Leaderboards
The above analyses suggest that to reduce the risk of test
data information leakage and ensure accurate evaluation of



OOD generalization, it is advisable to use self-supervised
pretrained weights or train from scratch, and to increase
the number of test domains. We have accordingly intro-
duced these two modifications to the DomainBed protocol
and present new leaderboards that are compared with the
old one which follows the current DomainBed protocol.

3.1. Experimental settings

Protocol modifications For self-supervised pretraining
investigated in Tab. 3, we choose MoCo-v2 [10] pretrained
ResNet-50 for the new evaluation protocol since it outper-
forms other self-supervised pretrained weights when us-
ing ResNet-50 as backbones. To support comparisons on
more advanced architectures like ViT, we employ MoCo-
v3 [12] pretrained ViT-B/16. Since there are only 4 do-
mains in datasets other than DomainNet and NICO++, we
still employ leave-one-domain-out strategy. For Domain-
Net and NICO++ with 6 domains each, we divide them into
3 groups: (clipart, infograph), (painting, quickdraw), (real,
sketch) for DomainNet, and (autumn, rock), (dim, grass),
(outdoor, water) for NICO++. We employ the leave-one-
group-out strategy so that each time we have 2 domains for
testing. Due to observations that there are relatively large
random fluctuations in the results of TerraInc both in our ex-
periments and in DomainBed, we do not adopt it in our new
leaderboards. Besides, we present leaderboards without
pretraining for DomainNet and NICO++ in Appendix C.4,
since only they are large enough for ResNet and ViT to be
sufficiently trained on from scratch.

Algorithms We test 10 algorithms following the modified
protocol: ERM [73], SWAD [7, 29], RSC [25], GroupDRO
[63], Fishr [61], CORAL [68, 69], MMD [42], SagNet [57],
IRM [1], Mixup [80, 86].

ERM directly optimizes sample averaged loss, typically
used in traditional machine learning tasks with IID assump-
tion. Among these algorithms, Fishr, CORAL, MMD, Sag-
Net, and IRM aim to achieve some form of invariance
across domains. Mixup aims to enhance the diversity of the
training data. Some of the algorithms were originally de-
veloped for other areas, such as CORAL and inter-domain
Mixup for domain adaptation, IRM for invariant learning,
GroupDRO for subpopulation shift, and SWAD adapted
from the optimizer seeking flat minima.

Other details For PACS, VLCS, and OfficeHome, we
set the number of iterations as 5,000 following Do-
mainBed [19]. For DomainNet, we set it as 15,000 fol-
lowing Cha et al. [7] since the training loss has not con-
verged yet at the iteration of 5,000. For NICO++, we set
it as 10,000. To reduce the computational cost of the cur-
rent DomainBed protocol, for each setting, namely each
combination of an algorithm and a pair of training and test

domains, we randomly search the hyperparameters over a
predefined distribution with 10 trials (instead of 20 trials
in DomainBed). We use the selected best hyperparameters
to run 2 more times with different random seeds (instead
of conducting 3 independent hyperparameter searches for
each random seed). The total cost is training 12 models (in-
stead of 60 models). As for the predefined hyperparameter
search space, we change the search space of MMD gamma
from log uniform distribution of 10uniform(−1,1) to that of
10uniform(−2,0) otherwise we observe that training loss will
not decrease. Besides, in all our experiments, we use the
Adam optimizer [32] with a Cosine Annealing Scheduler.
For details of training from scratch, we put them in Ap-
pendix C.4. For other details, such as data augmentation
and data split, we directly follow DomainBed.

3.2. Results

Tab. 5 presents the old leaderboard based on supervised pre-
trained ResNet-50 and the two new leaderboards. In the old
leaderboard, the results of SWAD are from Cha et al. [7],
the results of Fishr are from Rame et al. [61], and the others
are from the standard leaderboard maintained in the official
code repository of DomainBed [19]. The last column ∆R
represents the change of ranking for the algorithm, where
we mark the largest changes with bold type. The detailed
leaderboards for each dataset are in Appendix C.

Performance rankings of some algorithms show great
variations after applying the modified protocol. For
instance, RSC ranks 2nd in both new leaderboards with
self-supervised pretraining, implying its effectiveness, but it
fails to outperform ERM in the old leaderboard with super-
vised pretraining. For a recent SOTA algorithm Fishr pro-
posed based on the current DomainBed protocol, it achieves
a high test accuracy in the old leaderboard but fails to out-
perform ERM in the new ones. A similar conclusion stands
for SagNet too. Coupled with our analyses in Sec. 2.1, this
raises concerns about the preciseness and fairness of the
current evaluation protocol.

Rankings in self-supervised pretraining leaderboards
are more consistent with leaderboards of training from
scratch than supervised pretraining leaderboards. We
calculate spearman rank correlation for algorithm perfor-
mance in different leaderboards. The rank correlation be-
tween supervised pretraining and training from scratch is
0.261 while MoCo-v2 and MoCo-v3’s rank correlations
with training from scratch are 0.576 and 0.600 respectively.
Besides, rank correlation between MoCo-v2 and MoCo-
v3 is 0.794. This implies that evaluation based on self-
supervised pretraining is more effective than the currently
used supervised pretraining since it serves as a better surro-
gate of training from scratch. This also confirms that self-



Table 5. Leaderboards comparison between the current DomainBed protocol and the modified evaluation protocol of adopting self-
supervised pretraining and using multiple test domains.

Old leaderboard: Supervised pretrained ResNet-50

Algorithm PACS VLCS OfficeHome NICO++ DomainNet Average Ranking ∆R

ERM 85.5±0.2 77.5±0.4 66.5±0.3 77.5±0.1 40.9±0.1 69.6 6 -
SWAD 88.1±0.1 79.1±0.1 70.6±0.2 80.2±0.1 46.5±0.1 72.9 1 -
RSC 85.2±0.9 77.1±0.5 65.5±0.9 78.1±0.2 38.9±0.5 69.0 7 -

GroupDRO 84.4±0.8 76.7±0.6 66.0±0.7 77.6±0.4 33.3±0.2 67.6 8 -
Fishr 85.5±0.4 77.8±0.1 67.8±0.1 78.4±0.1 41.7±0.0 70.2 3 -

CORAL 86.2±0.3 78.8±0.6 68.7±0.3 79.3±0.1 41.5±0.1 70.9 2 -
MMD 84.6±0.5 77.5±0.9 66.3±0.1 77.3±0.2 23.4±9.5 65.8 10 -
SagNet 86.3±0.2 77.8±0.5 68.1±0.1 78.6±0.2 40.3±0.1 70.2 4 -

IRM 83.5±0.8 78.5±0.5 64.3±2.2 77.5±0.3 33.9±2.8 67.5 9 -
Mixup 84.6±0.6 77.4±0.6 68.1±0.3 78.9±0.0 39.2±0.1 69.6 5 -

New leaderboard: MoCo-v2 pretrained ResNet-50

Algorithm PACS VLCS OfficeHome NICO++ DomainNet Average Ranking ∆R

ERM 84.1±0.3 76.9±0.8 57.3±0.3 71.1±0.1 39.3±0.3 65.7 6 -
SWAD 86.2±0.6 77.7±0.7 62.6±0.1 75.6±0.1 42.9±0.1 69.0 1 -
RSC 85.9±1.9 78.5±0.3 60.3±0.3 74.2±0.5 40.5±0.4 67.9 2 +5

GroupDRO 83.0±0.5 76.5±0.8 57.4±0.8 71.2±0.2 36.3±0.4 64.9 10 -2
Fishr 82.8±1.0 75.4±1.6 58.7±0.2 71.0±0.1 39.3±0.3 65.4 8 -5

CORAL 84.0±1.4 77.5±0.4 62.6±0.3 73.7±0.2 41.2±0.1 67.8 3 -1
MMD 84.3±1.2 76.7±1.3 57.6±0.8 71.6±0.3 39.3±0.3 65.9 5 +5
SagNet 82.5±1.1 75.5±0.8 59.2±1.0 70.2±0.3 38.6±0.2 65.2 9 -5

IRM 83.5±0.8 75.3±0.5 57.9±0.3 71.5±0.3 39.1±0.1 65.5 7 +2
Mixup 82.5±1.6 76.1±0.7 60.5±0.2 73.3±0.2 39.2±0.1 66.3 4 +1

New leaderboard: MoCo-v3 pretrained ViT-B/16

Algorithm PACS VLCS OfficeHome NICO++ DomainNet Average Ranking ∆R

ERM 85.8±0.3 78.4±0.6 68.0±0.4 79.6±0.2 47.4±0.2 71.8 5 +1
SWAD 88.1±0.3 79.0±0.1 71.4±0.4 80.8±0.0 49.6±0.1 73.8 1 -
RSC 86.8±0.5 78.2±1.1 67.9±0.1 79.7±0.1 47.3±0.1 72.0 2 +5

GroupDRO 85.6±0.8 78.2±0.9 68.0±0.2 79.7±0.2 44.9±0.1 71.3 8 -
Fishr 86.6±1.3 78.0±0.4 67.7±0.3 79.6±0.2 47.2±0.1 71.8 6 -3

CORAL 86.7±0.9 78.1±0.6 67.8±0.5 79.5±0.1 47.5±0.1 71.9 3 -1
MMD 86.4±0.9 64.4±4.3 67.2±0.2 69.7±1.0 47.3±0.1 67.0 10 -
SagNet 85.6±1.0 78.0±0.5 66.9±0.2 79.2±0.2 46.5±0.1 71.2 9 -5

IRM 84.7±0.5 78.1±0.3 68.2±0.5 79.7±0.1 47.3±0.1 71.6 7 +2
Mixup 83.4±0.8 78.2±0.8 70.0±0.1 79.8±0.2 48.0±0.1 71.9 4 +1

supervised pretraining helps in alleviating the potential test
data information leakage.

SWAD consistently ranks 1st in every leaderboard. In
leaderboards of supervised pretraining, self-supervised pre-

training, and training from scratch, SWAD always ranks
1st and consistently improves upon ERM. This strongly
demonstrates its effectiveness and universality in OOD gen-
eralization. Such a result, along with the high rank of RSC
in the new leaderboards, indicates that intrinsic general-



ization properties and mechanisms like flatness or dropout
could be less sensitive to test data information leakage and
closer to essence of OOD generalization.

In conclusion, we present the new leaderboards using the
modified protocol to mitigate the possible test data informa-
tion leakage, so that we can promote a fairer and more ac-
curate evaluation and comparison between the domain gen-
eralization algorithms for their OOD generalization ability.

4. Discussion

4.1. Position of pretraining for OOD generalization

With the rapid development of pretrained models, includ-
ing large language models like ChatGPT and LLaMA [72],
and large multi-modal models like GPT-4V [58] and
LLaVA [48], nowadays typically we tend to take advan-
tage of pretraining in real applications. Despite their re-
markable performance, current studies show that they are
far from perfect and still suffer from performance degrada-
tion under distribution shifts, even for GPT-3.5 [81, 85] and
GPT-4V [93]. Besides, it is hard to collect sufficient diverse
data to train or fine-tune large models due to high expenses
and privacy issues in some areas like medical care, where
distribution shifts prevail. Thus the problem of OOD gen-
eralization still holds great significance in the era of large
pretrained models.

However, with the existence of pretrained models, proper
evaluation of OOD generalization becomes a natural prob-
lem [83]. Since we focus on the ability of models generaliz-
ing from training data to test data, strong pretrained weights
naturally bring about possible test information leakage as
we have analyzed in Sec. 2.1. Kumar et al. [37] also provide
theoretical analyses that with good pretrained weights and
a strong distribution shift, LP will outperform FT in that FT
can distort the pretrained features, which are already good
enough to generalize to test data. Our work serves as an ini-
tial effort to provide a better evaluation protocol for OOD
generalization under pretraining.

Recently, there have been works showing that pretraining
on larger datasets with larger architecture backbones greatly
improves test performance in OOD tasks [31, 77, 84], and
some directly design algorithms for better utilization of
pretrained weights to improve test domain performance
[47, 62]. We believe this is an interesting and meaning-
ful research direction of valuable practical usage. If we di-
rectly focus on improving test performance, we should em-
ploy pretrained weights that are as strong and powerful as
possible. However, for a fairer and more accurate evaluation
of OOD generalization from training data to test data dur-
ing the fine-tuning stage, we should seek pretrained weights
that exhibit less test data information leakage.

4.2. OOD model selection

Model selection is another important topic for OOD gen-
eralization. DomainBed [19] has pointed out that oracle
model selection (test-domain validation) leaks test data in-
formation in domain generalization. A similar problem also
exists in subpopulation shift and is even more severe. Idrissi
et al. [28] demonstrate that model selection based on the av-
erage accuracy on an IID validation set can lead to signif-
icant performance degradation compared with using worst
group accuracy. The latter strategy utilizes the group label
information, which should be considered as oracle model
selection at least for methods claiming no need for group
information. In this paper, we adhere to DomainBed’s IID
validation (training-domain validation) to prevent test in-
formation leakage for the guarantee of a fair and accurate
comparison, but it does not mean that IID validation is the
only right way for model selection. Considering the natu-
ral inconsistency of performance on IID validation data and
test data [70], maybe IID validation is not the best approach
to guiding model selection. Improving the model selection
strategy remains a fundamental research problem for OOD
generalization in the future.

4.3. Datasets for domain generalization

It has been a long time since domain generalization algo-
rithms are primarily evaluated on relatively small datasets,
e.g. Colored MNIST [1], Rotated MNIST [18], PACS [39],
VLCS [30], OfficeHome [74], and TerraInc [3]. Based on
our analyses in this paper, our recommendation for expand-
ing the number of test domains requires the establishment
of larger datasets, and it is the same if we want to add
more datasets to the leaderboard of training from scratch,
which only DomainNet [59] and NICO++ [90] can sup-
port currently. It is much more challenging to construct a
large, high-quality, and balanced dataset for domain gen-
eralization than to construct one for IID generalization, as
it involves creating many domains with common classes.
Recently, Lynch et al. [54] released a dataset Spawrious
for better evaluation of OOD generalization, whose data
is completely generated and collected from stable diffusion
models. This provides a new direction for constructing do-
main generalization datasets with much lower cost.
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A. Related Work
Given multiple training domains, the task of domain gener-
alization focuses on improving the generalization ability of
models on unseen test domains. Here we introduce related
work of domain generalization from two perspectives: algo-
rithms and evaluation. For other Out-of-Distribution (OOD)
generalization algorithms, you may refer to the survey of
OOD generalization [66]. For a more detailed review of
their evaluation, you may refer to the survey of OOD eval-
uation [83].

Algorithms There are many types of domain generaliza-
tion algorithms. The most typical practice is learning repre-
sentations that are invariant across training domains [42–
45, 55, 61, 79]. Other common types of algorithms in-
clude data augmentation [64, 75, 80], meta learning [2,
40, 41, 46], sample reweighting [87], and self-supervised
learning [20, 89]. Recently, more works focus on the fun-
damental properties and mechanisms of generalization, in-
cluding emphasizing hard-to-learn features [25] or sam-
ples [26], flatness [7, 91, 92], heterogeneity [49, 53, 71],
etc. For a more detailed review of domain generalization
algorithms, you may refer to the surveys of domain gener-
alization [76, 95].

Evaluation To facilitate the appropriate evaluation of do-
main generalization algorithms, there are a number of
datasets built with different types of distribution shifts.
Among the most widely used ones, PACS [39], Office-
Home [74] and DomainNet [59] depict the distribution shift
via the change of image styles. VLCS [30] is collected
from multiple sources and treats each source as a domain.
NICO++ [88, 90] creates different contexts based on var-
ious elements like background, object color, season, etc.
TerraInc [3] employs the camera view to generate distribu-
tion shifts. Apart from these datasets, Gulrajani and Lopez-
Paz [19] establishes DomainBed, a benchmark along with
a comprehensive evaluation protocol by incorporating hy-
perparameter search into the evaluation pipeline, to bring
convenience and fairness to the development and compari-
son of domain generalization algorithms.

B. Additional experiments for the analyses of
pretraining

Note that for both linear-probing (LP) and fine-tuning (FT),
we have searched the best hyperparameters on a validation
set that shares the same distribution with the training do-
mains, following the original protocol of DomainBed.

B.1. LP v.s. FT for supervised pretrained ResNet-50

Results of LP and FT with supervised pretrained ResNet-50
on DomainNet and NICO++ are shown in Tab. 7. We can

see that the phenomenon of LP outperforming FT still ex-
ists in some domains, which demonstrates the prevalence of
such phenomenon under the standard domain generalization
protocol.

B.2. LP v.s. FT for various pretraining

We change different pretraining architectures and methods.
For PACS and VLCS, we conduct experiments with the
same pretraining strategies and network backbones as in
Tab. 3. For TerraInc, DomainNet, NICO++, we conduct
experiments only with MoCo-v2 pretrained ResNet-50 and
MoCo-v3 pretrained ViT-B/16. As shown in Tab. 6 and
Tab. 8, we find that in these datasets, self-supervised pre-
training still guarantees that linear-probing does not outper-
form fine-tuning, which is beneficial for a fairer comparison
between algorithms.

C. Detailed Leaderboards
Next, we present detailed leaderboards of each dataset.
Our code is available at https://github.com/h-
yu16/DomainBed-v2. Our code is mostly based on
the implementation of DomainBed1. Since most results on
TerraInc fluctuate a lot, exhibiting a large standard devia-
tion [19], we do not include this dataset in our leaderboards.
Besides, we do not include Colored MNIST [1] and Rotated
MNIST [18] since they are semi-synthetic and could be eas-
ily solved by data augmentation techniques like rotation.

C.1. Supervised pretrained ResNet-50

Results of PACS, VLCS, OfficeHome, and DomainNet in
Tab. 5 are mostly from the README of the official code
repository of DomainBed1, except the results of SWAD [7]
and Fishr [61] that are from their own paper. Note that
in Fishr’s main paper, only results of test-domain valida-
tion are presented, while we employ the results of training-
domain validation in its appendix. Besides, detailed results
of NICO++ are listed in Tab. 9.

C.2. MoCo-v2 pretrained ResNet-50

Detailed results are listed from Tab. 10 to Tab. 14.

C.3. MoCo-v3 pretrained ViT-B/16

Detailed results are listed from Tab. 15 to Tab. 19.

C.4. ResNet-50 trained from scratch

For the predefined hyperparameter search space, we ad-
just the space of learning rate from the logarithm of
10uniform(−5,−3.5) to that of 10uniform(−4.5,−3) because
training from scratch requires a relatively higher learning
rate. The number of iterations is set as 60,000. Detailed
results are listed in Tab. 20 and Tab. 21.

1https://github.com/facebookresearch/DomainBed

https://github.com/h-yu16/DomainBed-v2
https://github.com/h-yu16/DomainBed-v2
https://github.com/facebookresearch/DomainBed


Table 6. Results of linear-probing (LP) and fine-tuning (FT) with different pretraining methods of different backbone architectures on
PACS, VLCS and TerraInc.

PACS P A C S Avg

ResNet-18 Supervised LP 95.8±0.2 69.9±0.7 52.5±0.7 48.7±1.4 66.7±0.5
FT 92.2±1.0 80.5±2.0 74.3±1.5 69.0±1.0 79.0±0.4

ResNet-50

Supervised LP 97.7±0.1 71.8±1.6 53.8±1.8 45.9±1.7 67.3±0.3
FT 97.4±0.1 86.1±0.9 80.4±1.4 77.1±2.5 85.3±0.6

MoCo LP 76.2±0.2 53.3±0.8 30.6±0.2 33.0±1.1 48.3±0.2
FT 92.4±0.4 75.3±2.4 71.0±1.8 69.0±2.5 76.9±1.4

MoCo-v2 LP 91.9±0.0 70.0±0.3 51.0±0.1 32.7±0.9 61.4±0.2
FT 95.4±0.7 84.8±1.1 79.5±1.0 76.7±1.2 84.1±0.3

SimCLR LP 47.4±0.2 29.6±0.4 35.5±0.4 32.3±0.9 36.2±0.2
FT 73.4±1.6 52.0±2.1 60.9±2.0 57.8±1.8 61.0±0.2

SimCLR-v2 LP 32.5±0.8 26.0±0.3 22.6±1.4 20.8±1.6 25.5±0.5
FT 89.7±1.5 75.7±1.6 75.5±2.3 71.8±2.1 78.2±1.6

ViT-B/16
Supervised LP 88.6±2.6 76.3±0.4 64.9±0.6 48.2±1.7 69.5±0.7

FT 98.6±0.2 90.4±0.6 81.7±0.8 74.8±3.4 86.4±0.6

MoCo-v3 LP 94.2±0.5 75.2±0.9 61.5±0.5 46.9±0.6 69.4±0.2
FT 97.3±0.2 87.9±1.6 83.0±0.4 75.0±0.8 85.8±0.3

VLCS V L C S Avg

ResNet-18 Supervised LP 76.0±0.7 58.6±0.1 97.8±0.5 70.1±0.4 75.6±0.0
FT 68.8±1.9 61.7±2.0 94.9±1.5 67.8±2.7 73.3±1.3

ResNet-50

Supervised LP 77.2±1.6 58.1±0.6 97.4±0.4 71.4±1.1 76.0±0.6
FT 73.5±1.5 66.3±0.9 96.9±1.1 71.7±1.5 77.1±1.0

MoCo LP 67.7±0.7 54.8±0.4 91.9±0.3 66.4±0.4 70.2±0.3
FT 69.6±1.1 63.6±0.7 96.4±2.1 69.4±1.2 74.8±0.7

MoCo-v2 LP 71.9±0.1 54.5±0.4 97.6±0.2 70.8±0.9 73.7±0.2
FT 73.8±3.3 64.3±1.9 97.8±0.3 71.8±1.0 76.9±0.8

SimCLR LP 48.8±0.2 54.4±0.1 52.7±1.4 45.0±0.2 50.2±0.4
FT 56.3±1.2 62.8±0.3 75.3±2.9 58.9±1.1 63.3±0.4

SimCLR-v2 LP 45.8±0.7 52.9±0.1 62.8±1.1 45.1±0.1 51.6±0.2
FT 63.8±1.2 63.8±1.6 86.8±2.7 65.0±2.3 69.9±1.1

ViT-B/16
Supervised LP 66.0±0.2 62.4±0.8 91.7±0.8 72.0±0.5 73.0±0.4

FT 77.9±1.4 65.6±0.9 97.4±0.6 77.0±1.2 79.5±0.5

MoCo-v3 LP 72.4±0.7 59.1±0.3 97.6±0.1 75.4±0.7 76.1±0.2
FT 74.4±1.6 64.9±0.5 98.2±0.4 76.1±0.2 78.4±0.6

TerraInc L38 L43 L46 L100 Avg

ResNet-50 MoCo-v2 LP 71.9±0.1 54.5±0.4 97.6±0.2 70.8±0.9 73.7±0.2
FT 73.8±3.3 64.3±1.9 97.8±0.3 71.8±1.0 76.9±0.8

ViT-B/16 MoCo-v3 LP 72.4±0.7 59.1±0.3 97.6±0.1 75.4±0.7 76.1±0.2
FT 74.4±1.6 64.9±0.5 98.2±0.4 76.1±0.2 78.4±0.6



Table 7. Results of linear-probing (LP) and fine-tuning (FT) with supervised pretrained ResNet-50 on DomainNet and NICO++.

DomainNet clipart infograph painting quickdraw real sketch Avg

LP 42.1±0.2 14.5±0.1 41.8±0.1 3.4±0.1 61.9±0.1 31.9±0.4 32.6±0.1
FT 62.0±0.2 19.0±0.2 45.9±0.4 12.6±0.6 59.0±0.6 50.5±0.3 41.5±0.2

NICO++ autumn rock dim grass outdoor water Avg

LP 77.1±0.1 76.6±0.1 66.1±0.0 80.7±0.2 75.6±0.1 68.3±0.3 74.1±0.0
FT 80.0±0.9 78.6±0.2 72.5±0.7 80.1±0.4 75.3±0.1 70.0±0.3 76.1±0.1

Table 8. Results of linear-probing (LP) and fine-tuning (FT) with different pretraining methods of different backbone architectures on
DomainNet and NICO++.

DomainNet clipart infograph painting quickdraw real sketch Avg

ResNet-50 MoCo-v2 LP 16.7±0.1 07.3±0.1 28.4±0.2 0.6±0.0 33.6±0.1 18.4±0.1 17.5±0.0
FT 59.4±0.6 17.9±0.4 45.4±0.6 12.9±0.6 57.0±0.6 49.8±0.4 40.4±0.3

ViT-B/16 MoCo-v3 LP 29.3±0.2 13.9±0.1 39.3±0.2 2.2±0.1 43.2±0.2 27.5±0.1 25.9±0.1
FT 68.9±0.2 24.7±0.4 55.5±1.1 17.0±1.1 67.6±0.2 56.3±0.2 48.3±0.1

NICO++ autumn rock dim grass outdoor water Avg

ResNet-50 MoCo-v2 LP 64.5±0.3 61.8±0.3 47.2±0.0 64.7±0.1 59.1±0.2 50.5±0.1 58.0±0.1
FT 75.6±0.6 73.0±0.2 67.9±1.0 75.3±0.3 70.6±0.4 64.3±0.3 71.1±0.1

ViT-B/16 MoCo-v3 LP 78.1±0.2 77.2±0.1 62.8±0.2 80.3±0.1 73.1±0.2 65.7±0.1 72.9±0.1
FT 83.3±0.2 82.7±0.3 76.4±0.1 83.8±0.3 78.9±0.2 72.7±0.5 79.6±0.2

Table 9. Results of supervised pretrained ResNet-50 on NICO++.

Supervised pretrained ResNet-50

NICO++ autumn rock dim grass outdoor water Avg

ERM 81.0±0.3 78.8±0.4 73.7±0.4 80.5±0.4 78.8±0.2 72.4±0.2 77.5±0.1
SWAD 83.3±0.2 81.8±0.1 76.6±0.2 83.3±0.1 80.8±0.1 75.5±0.1 80.2±0.1
RSC 81.3±0.3 79.6±0.7 74.1±0.5 81.2±0.7 79.1±0.1 73.2±0.3 78.1±0.2

GroupDRO 80.9±0.7 79.3±0.3 73.4±0.7 80.4±0.2 78.9±0.6 72.8±0.5 77.6±0.4
Fishr 81.6±0.3 80.4±0.1 74.0±0.5 81.9±0.5 79.6±0.5 73.1±0.2 78.4±0.1

CORAL 82.5±0.6 81.3±0.1 74.4±0.2 82.4±0.2 80.3±0.2 75.2±0.1 79.3±0.1
MMD 81.0±0.5 79.0±0.1 73.1±0.2 80.1±0.1 77.9±0.4 72.8±1.5 77.3±0.2
SagNet 81.6±0.3 80.2±0.5 74.0±0.3 81.8±0.2 79.3±0.2 74.4±0.2 78.6±0.2

IRM 80.3±1.3 79.0±0.2 73.2±0.9 81.2±0.4 78.6±0.1 72.9±0.3 77.5±0.3
Mixup 82.4±0.1 80.6±0.2 74.5±0.4 81.5±0.3 80.0±0.3 74.3±0.3 78.9±0.0



Table 10. Results of MoCo-v2 pretrained ResNet-50 on PACS.

MoCo-v2 pretrained ResNet-50

PACS photo art cartoon sketch Avg

ERM 95.4±0.7 84.8±1.1 79.5±1.0 76.7±1.2 84.1±0.3
SWAD 96.8±0.3 88.1±0.5 82.4±0.2 77.4±1.8 86.2±0.6
RSC 97.6±0.7 87.9±1.3 81.7±0.7 76.7±5.0 85.9±1.9

GroupDRO 95.4±0.2 83.3±0.7 80.2±1.1 73.2±1.3 83.0±0.5
Fishr 95.0±0.1 82.9±1.0 79.1±3.5 74.1±0.5 82.8±1.0

CORAL 96.2±0.3 85.3±2.8 77.8±1.1 76.7±1.7 84.0±1.4
MMD 95.4±0.5 85.8±1.2 80.6±0.8 75.5±3.7 84.3±1.2
SagNet 92.6±0.5 83.7±2.3 78.2±0.5 75.7±2.3 82.5±1.1

IRM 95.3±1.0 82.6±2.2 80.7±1.1 75.6±5.3 83.5±0.8
Mixup 95.7±0.2 84.3±1.3 79.7±0.8 70.4±4.6 82.5±1.6

Table 11. Results of MoCo-v2 pretrained ResNet-50 on VLCS.

MoCo-v2 pretrained ResNet-50

VLCS PASCAL LABELME CALTECH SUN Avg

ERM 73.8±3.3 64.3±1.9 97.8±0.3 71.8±1.0 76.9±0.8
SWAD 75.7±1.0 61.9±0.9 98.5±0.3 74.8±1.2 77.7±0.7
RSC 76.4±2.1 66.3±1.0 99.1±1.3 72.2±0.5 78.5±0.3

GroupDRO 72.8±2.2 64.7±0.4 96.2±0.9 72.2±0.2 76.5±0.8
Fishr 72.6±2.9 62.7±1.9 96.0±0.8 70.2±2.5 75.4±1.6

CORAL 74.7±1.5 64.7±1.0 97.3±0.8 73.3±1.5 77.5±0.4
MMD 73.6±2.2 63.3±1.7 97.9±0.3 72.1±2.5 76.7±1.3
SagNet 72.8±1.7 62.9±1.4 96.3±0.7 70.1±1.1 75.5±0.8

IRM 70.0±1.5 62.6±0.8 98.1±0.9 70.7±0.5 75.3±0.5
Mixup 71.4±1.2 63.2±2.5 97.8±0.2 71.8±0.2 76.1±0.7

Table 12. Results of MoCo-v2 pretrained ResNet-50 on OfficeHome.

MoCo-v2 pretrained ResNet-50

OfficeHome Art Clipart Product Real Avg

ERM 49.6±2.7 45.2±2.0 65.8±1.3 68.6±0.2 57.3±0.3
SWAD 57.4±0.2 49.9±0.8 69.6±0.3 73.6±0.4 62.6±0.1
RSC 54.0±0.9 46.4±1.3 69.1±1.0 71.2±0.5 60.2±0.3

GroupDRO 50.0±1.4 45.5±1.1 66.2±0.8 68.0±0.5 57.4±0.8
Fishr 52.5±1.4 45.7±0.7 67.3±0.6 69.2±0.8 58.7±0.2

CORAL 58.2±0.5 49.2±0.4 71.1±0.5 72.1±0.4 62.6±0.3
MMD 50.7±0.7 44.6±2.3 66.6±0.8 68.4±0.6 57.6±0.8
SagNet 55.6±1.5 47.1±2.9 69.9±0.5 72.1±0.4 61.2±1.0

IRM 50.1±1.1 45.2±1.4 67.0±1.2 69.2±0.5 57.9±0.3
Mixup 54.7±0.8 47.5±1.2 67.8±0.5 72.0±0.4 60.5±0.2



Table 13. Results of MoCo-v2 pretrained ResNet-50 on DomainNet.

MoCo-v2 pretrained ResNet-50

DomainNet clipart infograph painting quickdraw real sketch Avg

ERM 57.8±0.6 17.5±0.4 46.5±0.7 12.7±0.8 54.8±0.2 46.6±0.4 39.3±0.3
SWAD 62.1±0.1 19.1±0.1 50.5±0.0 15.0±0.2 59.4±0.2 51.4±0.2 42.9±0.1
RSC 57.7±0.9 19.0±0.7 47.2±0.2 15.8±0.7 54.8±0.7 48.5±0.4 40.5±0.4

GroupDRO 55.9±1.3 16.1±1.0 41.8±0.6 11.3±0.6 50.5±0.6 42.3±0.4 36.3±0.4
Fishr 57.4±0.5 16.9±0.6 46.2±0.3 12.5±0.5 55.1±0.5 47.7±0.1 39.3±0.3

CORAL 59.5±0.2 18.5±0.7 49.2±1.1 13.8±0.7 57.1±0.1 48.8±0.7 41.2±0.1
MMD 58.0±0.4 17.2±0.1 46.4±0.9 13.1±0.3 54.4±0.9 46.8±0.4 39.3±0.3
SagNet 57.4±0.2 16.0±0.4 46.1±0.6 12.2±0.8 53.2±0.3 46.7±0.3 38.6±0.2

IRM 57.3±0.2 17.2±0.3 46.3±0.4 13.1±0.3 54.1±0.6 46.7±0.4 39.1±0.1
Mixup 56.2±0.9 16.8±0.2 46.7±0.1 13.0±0.7 54.8±0.7 47.8±0.3 39.2±0.1

Table 14. Results of MoCo-v2 pretrained ResNet-50 on NICO++.

MoCo-v2 pretrained ResNet-50

NICO++ autumn rock dim grass outdoor water Avg

ERM 75.6±0.6 73.0±0.2 67.9±1.0 75.3±0.3 70.6±0.4 64.3±0.3 71.1±0.1
SWAD 80.2±0.1 78.2±0.1 72.7±0.1 80.1±0.3 74.8±0.1 67.8±0.1 75.6±0.1
RSC 78.8±0.6 77.2±0.7 70.7±0.8 78.4±0.6 73.7±0.8 66.5±0.9 74.2±0.5

GroupDRO 76.4±0.8 74.3±0.4 67.4±1.0 75.2±0.5 70.2±0.2 63.9±0.9 71.2±0.2
Fishr 75.1±0.9 73.7±1.1 67.1±0.1 75.1±0.7 70.7±0.5 64.0±1.0 71.0±0.1

CORAL 78.2±0.5 76.7±0.6 69.2±0.3 78.2±0.3 73.1±0.6 66.5±0.9 73.7±0.2
MMD 76.0±0.5 74.2±0.3 67.6±0.1 75.6±1.1 71.1±0.1 64.8±0.6 71.6±0.3
SagNet 74.6±0.8 72.4±0.6 66.7±0.9 73.9±0.5 70.5±0.2 63.1±0.7 70.2±0.3

IRM 76.0±1.0 73.9±0.7 68.1±0.4 75.8±0.4 71.6±0.4 63.8±0.8 71.5±0.3
Mixup 77.4±0.2 76.5±0.1 68.8±0.7 77.6±0.5 73.1±0.3 66.5±0.3 73.3±0.2



Table 15. Results of MoCo-v3 pretrained ViT-B/16 on PACS.

MoCo-v3 pretrained ViT-B/16

PACS photo art cartoon sketch Avg

ERM 97.3±0.2 87.9±1.6 83.0±0.4 75.0±0.8 85.8±0.3
SWAD 98.4±0.4 91.9±0.0 83.8±0.5 78.2±0.5 88.1±0.3
RSC 98.3±0.5 89.2±1.2 83.8±1.5 75.8±1.7 86.8±0.5

GroupDRO 97.6±0.2 89.5±2.2 82.8±0.3 72.5±2.2 85.6±0.8
Fishr 97.7±0.2 88.1±0.9 85.0±1.7 75.7±3.7 86.6±1.3

CORAL 97.8±0.3 84.4±2.7 83.9±1.1 80.5±1.4 86.7±0.9
MMD 98.7±0.0 87.6±1.6 83.7±0.4 75.7±2.4 86.4±0.9
SagNet 97.0±0.4 88.3±0.9 82.9±2.9 73.5±3.0 85.6±1.0

IRM 96.9±0.0 87.7±1.1 82.7±1.7 71.6±0.3 84.7±0.5
Mixup 97.3±0.4 87.1±0.8 84.4±0.9 64.7±2.8 83.4±0.8

Table 16. Results of MoCo-v3 pretrained ViT-B/16 on VLCS.

MoCo-v3 pretrained ViT-B/16

VLCS PASCAL LABELME CALTECH SUN Avg

ERM 74.4±1.6 64.9±0.5 98.2±0.4 76.1±0.2 78.4±0.6
SWAD 77.4±0.5 64.0±0.4 97.6±0.6 77.1±0.4 79.0±0.1
RSC 74.8±3.6 64.4±0.4 98.2±0.4 75.6±0.5 78.2±1.1

GroupDRO 73.2±0.3 64.3±1.9 97.5±0.5 77.9±1.6 78.2±0.9
Fishr 74.1±1.2 64.4±1.3 98.0±0.6 75.4±1.0 78.0±0.4

CORAL 74.9±1.1 64.0±1.4 98.3±0.4 75.2±1.9 78.1±0.6
MMD 67.7±0.7 65.6±0.7 61.5±0.0 63.1±17.5 64.4±4.3
SagNet 74.3±1.6 64.5±1.1 97.6±0.3 75.7±0.4 78.0±0.5

IRM 74.1±1.0 65.3±1.6 97.0±0.5 76.1±0.5 78.1±0.3
Mixup 74.4±2.2 65.1±0.9 98.0±0.4 75.4±1.2 78.2±0.8

Table 17. Results of MoCo-v3 pretrained ViT-B/16 on OfficeHome.

MoCo-v3 pretrained ViT-B/16

OfficeHome Art Clipart Product Real Avg

ERM 64.7±0.6 54.1±0.5 74.8±0.7 78.3±0.7 68.0±0.4
SWAD 71.0±0.5 54.5±1.0 78.7±0.2 81.4±0.2 71.4±0.4
RSC 64.2±0.5 55.8±0.3 74.3±0.2 77.3±0.5 67.9±0.1

GroupDRO 63.8±0.6 55.6±0.8 74.8±0.4 77.9±0.6 68.0±0.2
Fishr 64.3±0.3 54.8±0.5 74.7±0.8 77.1±0.8 67.7±0.3

CORAL 63.9±1.1 53.7±0.4 74.9±0.8 78.6±0.4 67.8±0.5
MMD 63.6±0.5 53.6±0.9 74.4±0.2 77.2±0.3 67.2±0.2
SagNet 63.1±1.2 52.9±0.9 73.9±0.4 77.5±0.2 66.9±0.2

IRM 64.7±1.0 55.8±1.3 74.4±0.5 77.9±0.3 68.2±0.5
Mixup 66.3±0.6 57.6±0.1 76.7±0.6 79.3±0.3 70.0±0.1



Table 18. Results of MoCo-v3 pretrained ViT-B/16 on DomainNet.

MoCo-v3 pretrained ViT-B/16

DomainNet clipart infograph painting quickdraw real sketch Avg

ERM 68.2±0.1 23.0±0.1 55.3±0.3 16.8±1.1 66.2±0.2 54.8±0.4 47.4±0.2
SWAD 69.7±0.2 24.3±0.1 58.8±0.1 19.3±0.3 68.1±0.2 57.4±0.3 49.6±0.1
RSC 68.3±0.1 22.8±0.2 55.6±0.4 17.0±0.8 65.7±0.2 54.2±0.3 47.3±0.1

GroupDRO 66.2±0.5 22.0±0.2 52.9±0.4 16.1±1.2 62.0±0.3 50.4±0.4 44.9±0.1
Fishr 68.3±0.2 23.2±0.1 55.5±0.4 16.8±0.6 65.7±0.1 53.8±0.2 47.2±0.1

CORAL 68.4±0.2 23.2±0.2 55.3±0.5 17.4±0.8 66.3±0.2 54.8±0.1 47.5±0.1
MMD 68.2±0.2 22.7±0.1 55.3±0.4 17.0±0.8 66.1±0.1 54.5±0.2 47.3±0.1
SagNet 67.3±0.5 21.9±0.3 54.5±0.7 16.6±0.4 64.8±0.4 54.0±0.5 46.5±0.1

IRM 68.1±0.2 22.3±0.2 55.3±0.3 17.5±0.7 66.0±0.2 54.5±0.2 47.3±0.1
Mixup 67.8±0.4 23.9±0.3 57.3±0.5 17.3±0.5 65.9±0.3 56.1±0.3 48.0±0.1

Table 19. Results of MoCo-v3 pretrained ViT-B/16 on NICO++.

MoCo-v3 pretrained ViT-B/16

NICO++ autumn rock dim grass outdoor water Avg

ERM 83.3±0.2 82.7±0.3 76.4±0.1 83.8±0.3 78.9±0.2 72.7±0.5 79.6±0.2
SWAD 84.6±0.1 84.3±0.1 77.6±0.0 84.5±0.1 79.9±0.0 74.0±0.1 80.8±0.0
RSC 83.1±0.3 83.0±0.3 76.0±0.1 84.0±0.4 79.2±0.4 72.8±0.8 79.7±0.1

GroupDRO 83.0±0.2 83.2±0.2 76.0±0.4 84.1±0.1 79.1±0.3 72.9±0.6 79.7±0.2
Fishr 83.0±0.6 83.0±0.4 76.2±0.2 84.1±0.1 78.9±0.4 72.6±0.4 79.6±0.2

CORAL 83.0±0.3 82.9±0.2 75.9±0.1 83.5±0.4 78.7±0.2 73.1±0.3 79.5±0.1
MMD 73.6±1.1 72.6±0.9 65.3±0.0 75.5±0.3 69.8±1.9 61.4±1.9 69.7±1.0
SagNet 83.0±0.4 82.7±0.3 75.4±0.7 83.7±0.1 78.3±0.3 72.0±0.2 79.2±0.2

IRM 83.7±0.2 82.9±0.1 76.1±0.1 83.9±0.2 78.8±0.6 72.9±0.3 79.7±0.1
Mixup 82.8±0.2 82.7±0.4 77.2±0.2 84.2±0.2 79.1±0.5 73.0±0.4 79.8±0.2



Table 20. Results of ResNet-50 trained from scratch on DomainNet.

ResNet-50 trained from scratch

DomainNet clipart infograph painting quickdraw real sketch Avg

ERM 53.6±0.3 12.5±0.0 37.2±0.1 12.8±0.5 42.9±0.2 40.8±0.7 33.3±0.1
SWAD 58.4±0.1 15.6±0.1 42.4±0.2 15.8±0.1 47.6±0.3 45.3±0.3 37.5±0.1
RSC 54.3±0.4 13.5±0.3 38.6±0.3 14.5±0.1 43.6±0.2 41.5±0.6 34.3±0.1

GroupDRO 51.9±0.4 11.0±0.4 34.1±0.5 11.4±0.7 32.7±0.8 34.5±1.0 29.3±0.2
Fishr 53.6±0.5 12.6±0.2 37.6±0.4 13.3±1.0 43.4±0.1 40.4±0.6 33.5±0.3

CORAL 53.7±0.4 11.5±0.3 37.2±0.5 11.3±0.7 36.4±0.3 37.6±0.4 31.3±0.2
MMD 53.2±0.4 11.2±0.2 37.4±0.1 12.3±1.2 37.4±0.1 38.7±0.6 31.7±0.2
SagNet 53.2±0.1 11.3±0.1 36.5±0.1 11.9±0.3 41.7±0.3 38.6±0.5 32.2±0.1

IRM 53.2±0.9 12.2±0.1 37.5±0.4 13.8±0.4 42.7±0.3 40.5±0.4 33.3±0.4
Mixup 54.3±0.9 12.8±0.4 41.3±0.7 12.7±0.3 42.5±0.8 43.5±0.9 34.5±0.3

Table 21. Results of ResNet-50 trained from scratch on NICO++.

ResNet-50 trained from scratch

NICO++ autumn rock dim grass outdoor water Avg

ERM 54.8±0.4 51.8±0.4 47.1±0.1 51.3±0.3 48.5±0.4 41.4±0.6 49.1±0.1
SWAD 59.4±0.5 57.4±0.6 54.1±0.4 58.8±0.4 54.8±0.1 47.1±0.2 55.3±0.2
RSC 55.1±0.8 52.5±0.5 48.8±0.9 53.3±0.9 49.6±0.6 42.1±0.8 50.2±0.6

GroupDRO 53.4±1.0 51.8±1.1 47.9±0.8 53.2±0.3 50.5±0.5 42.9±0.5 49.9±0.7
Fishr 54.4±0.4 52.1±0.8 47.9±0.5 51.8±0.2 48.5±0.8 41.2±0.9 49.3±0.3

CORAL 52.5±1.6 51.1±0.6 47.2±0.9 53.0±1.5 48.7±1.5 41.2±1.5 48.9±0.9
MMD 52.9±0.7 52.2±0.3 49.0±1.4 53.7±0.8 49.3±0.5 42.2±0.5 49.9±0.5
SagNet 53.4±1.2 51.4±0.6 47.6±0.5 52.2±0.6 49.1±0.2 40.8±0.6 49.1±0.1

IRM 53.3±2.3 51.0±0.9 46.2±1.1 52.1±0.9 48.8±0.7 40.7±1.0 48.7±0.9
Mixup 62.7±0.1 60.5±0.6 57.5±1.0 62.4±0.5 58.5±0.3 51.0±0.7 58.8±0.4
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