Sheared Backpropagation for Fine-tuning Foundation Models

Supplementary Material

7. Proof of Theorem 1

In this section, we prove the main theorem in our paper. We
follow Jiang et al. [24] and Liu and Mozafari [30] to make
this proof. Consider a single linear layer, according to the
definition of S;-smoothness of £ with respect to 64 and the
update rule 0,1 4 = 6; 4 — g, ;. we have:

L(0r11) = L(0r)

D D
Sa
< (GrarOrrra — Ora) + Y 5 1014 — 0r.al?

d=1 d=1
1D
D 9 D
==Y (grasGha) + 5 > Sl al? (12)
d=1
2
- %Z geaGha) + =0 g (13)
D
=—w Z<gt,d» o Zya) + Ooat Hzgtd &
d=1 Pt.d
14
D -
:—atz gtdvgtd OOOét| ZL Zy all®
d=1
15)
2\ Zia . Ooat ||gt al®
S—at2%<gt,d,gtd Z Zfd
a—1 Ptad t d
(16)

Taking expectations on both sides, we have:

E[ﬁ(etﬂ)} —]E[ﬁ(et)]
D
<—a) lgeald+ ooat Z loeall 15,
d=1

i Pta
By summing over 7 iterations, we have:

) L
TZHgtH <~
T D 2
Seox g4
=1 a=1 Pt

So far, we have completed the proof of Theorem 1. As
the number of training iterations 7" increase, the two terms

on the right-hand side of the equation progressively dimin-
ishes to zero, whereas the value of the second term can be
further adjusted with the bounds set by the bandit method.
For further insight into this aspect, we direct readers to the
work of Liu and Mozafari [30], which demonstrates that the
average convergence rate of the JOINTSPAR method can at-
tain O() Distinguishing our work from their approach,
which utlhzes parameter-wise blocks, we propose an inno-
vative adaptation: transforming these blocks into column-
wise patterns for each parameter. This modification, in
conjunction with activation pruning, significantly enhances
computation and memory efficiency.

In the work of BACKRAZOR [24], a convergence analy-
sis is conducted based on the results of applying top-k prun-
ing to activation matrices. Our research takes this a step fur-
ther by altering the mask pattern to a column-wise config-
uration. Based on Lemma 1, our modification seamlessly
integrates the probabilistic elements of the bandit method
across the activation columns into the gradient approxima-
tion, thus creating a methodology distinct from that of Jiang
et al. [24].

8. Implementation Details

In this discussion, we elaborate on the efficient implemen-
tation of our methods, building upon PyTorch [39] and
BACKRAZOR [24].

Considering a linear layer as an example, our approach
involves maintaining a probability distribution over the ac-
tivation matrix. This is achieved by using an array, sized
according to the number of columns in the input matrix =z,
to record the probability of Bernoulli sampling over the co-
ordinates. To acquire gradient information, we utilize the
register_backward_-hook API from PyTorch. This
function is crucial for harnessing gradients during the back-
propagation of loss, when gradients with respect to the mod-
ule are computed. For a specified update frequency span-
ning several iterations, the probability distribution is up-
dated based on this gradient information. This process is
detailed in Algorithm 2.

In terms of gradient computation, our method involves
using a column-wise mask to reconstruct the remaining
activation coordinates into a smaller matrix. This ap-
proach reduces the workload of computing the full gradi-
ent. Subsequently, the smaller matrix is expanded back
to its original size. This technique bears resemblance
to the one employed in JOINTSPAR [30], which utilizes
the requires_grad-(False) APIto inhibit parameter-
wise gradient computation.

Table 6. Results of fine-tuning ViT on Flowers-102.

Memory Finish

Dataset Method Peak Usage Time Accuracy(%)
FULL-FT 19600MB 17.18min 99.3

Flowers BACKRAZOR 8190MB 34.84min 99.5
(ours) PREBR++ 7800MB 22.65min 99.4

Table 7. Results of fine-tuning ViT on CUB-200.

Memory Epoch

Dataset Method Peak Usage Time Accuracy(%)
FULL-FT 19600 MB 22s 85.5
CUB-200 BACKRAZOR 8210MB 47s 86.6
(ours) PREBR++ 8100MB 30s 86.4

Regarding our proposed PREBACKRAZOR-, the prin-
cipal alteration consists of transforming the element-wise
mask used in BACKRAZOR into a column-wise pattern.
This revamped mask is generated by considering the top-k
norm values from each column of the activation matrix. It’s
important to note that while this represents a simplified im-
plementation, it nonetheless yields a moderate improvement
in computation efficiency, particularly noticeable when the
pruning ratio is not aggressive (80%).

As outlined in Sec. 3, integrating dense FLASHATTEN-
TION [16, 17] kernels significantly enhances computation
but also increases memory usage. To bring the memory
consumption below that of BACKRAZOR, we need to in-
troduce sparsity into the process. During our experiments
with asymmetric backpropagation, where we use sparsified
Q KV matrices solely for computing backward gradients,
we encountered nan values, signaling computational insta-
bility. To address this issue, we adopted a recomputation
strategy, which involves performing an additional sparse at-
tention forward pass using the sparsified matrices during
the backward pass, prior to computing gradients. We then
utilize the outcomes of this pass for the backward process.
By integrating sparse and dense kernels, we maintain mem-
ory usage at the same level as that of BACKRAZOR. We
have empirically validated the effectiveness of this method
through our experiments.

9. More Experiment Results

We present the results of fine-tuning the ViT-B/16 model
on the Flowers-102 [37] and CUB-200 [52] datasets, with
a pruning ratio of 80%. Specifically for the Flowers-102
dataset, the model is fine-tuned over 2,000 steps with a max-
imum learning rate of 0.03. All other experimental settings
are consistent with those described in Sec. 5.

As demonstrated in Tabs. 6 and 7, our proposed PRE-
BACKRAZOR not only attains an accuracy comparable to
that of BACKRAZOR but also delivers a notable speed im-

provement while maintaining similar memory efficiency.
The results on CUB-200 also indicate that at a less aggres-
sive pruning ratio of 80%, our method shows a significant
improvement compared to the results presented in Tab. 1,
closely approaching the accuracy of BackRazor.

	. Proof of Theorem 1
	. Implementation Details
	. More Experiment Results

