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Abstract

This supplementary manuscript provides the network
configuration of the proposed paradigm, details of the ex-
perimental settings, and more qualitative evaluation results
for generated synthetic hyperspectral images (HSIs). Fi-
nally, we discuss the potential benefits, limitations, as well
as future work of this study.

1. Network Configuration
Table s1 lists the detailed constitutions of the residual spec-
tral attention block (RSA) in the proposed unmixing net-
work. Table s2 lists the detailed architecture of the proposed
unmixing network.

Our experiments involved three types of typical and ad-
vanced generative models, including the VDVAE, Style-
GAN3, and DDPM. Therefore, We offer the specific imple-
mentations and parameters for different models separately.
For the VDVAE, we choose the 62 layers with a hidden
size of 512 and a bottleneck size of 128. The dimension
of the latent feature(the latent dim) per layer is set to 16.
Duiring the training process, we set the VDVAE learning
rate to 0.00015 and utilize the Adam optimizer. Addition-
ally, we apply an exponential moving average (EMA) rate
of 0.00015 and set the skip threshold to 180. For the Style-
GAN3, the mapping network consists of 8 fully-connected
layers, and the dimensionality of the input and output ac-
tivations (W, Z) is set to 512. During the traning process,
the learning rate of the generator and discriminator is set to
0.002 and choose the Adam optimizer. For the DDPM, we
set the variance to increase linearly from 1e−6 to 1e−2 with
a step size of 2000 during the forward process. We construct
a denoising U-Net with depth multipliers of [1, 2, 2, 4, 4] for
the reversal process. The setting details of the VDVAE,
StyleGAN3, and DDPM are listed in Table s3, s4, s5, re-
spectively.
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Module Name Layer Name Kernel size Channel Inputs

RSA

Spatial

block

Conv1 3×3 64 Input

ReLU1 - 64 Conv1

Conv2 3×3 64 ReLU1

Sum1 - 64 Input,Conv2

Spectral

attention

block

Conv3 3×3 64 Sum 1

ReLU2 - 64 Conv3

Conv4 3×3 64 ReLU2

Sum2 - 64 Sum1,Conv4

Conv5 1×1 64 Sum2

ReLU3 - 64 Conv5

Conv6 1×1 64 ReLU3

Sigmoid1 - 64 Conv6

Sum3 - 64 Sigmoid1, Sum2

Residual Sum4 - 64 Sum1,Sum3

Table s1. Detailed constitutions of RSA in the proposed unmixing
network.

2. Experimental Settings

We provide detailed descriptions of datasets adopted for
HSI synthesis in the remote sensing scenario in Table s6 and
the natural mixed-ground scenario in Table s7, respectively.

For the remote sensing scenario, an HSI dataset Chiku-
sei [5] collected over agricultural and urban areas, is em-
ployed to train the unmixing network. We conduct valida-
tion experiments on the HSI dataset HSRS-SC [4]. Note-
worthy, these two datasets have different spectral ranges
and resolutions due to sensor differences. As presented in
Table s6, we resample and align their spectra within the vis-
ible range. External RGB dataset AID [3] is utilized for
training the abundance-based generation. Similarly, HSI
datasets ARAD [1], Harvard [2], and external RGB dataset
Place [6] are used for the natural scenario.



Network Layer Kernel size Channel Output size

Input - - (W,H,3)

Encoder

Conv2D 3×3 32 (W,H,32)

RSA - 64 (W,H,64)

RSA - 128 (W,H,128)

RSA - 96 (W,H,96)

RSA - 48 (W,H,48)

Conv2D 3×3 5 (W,H,5)

Softmax - - (W,H,5)

Decoder Conv2D 1×1 C (W,H,C)

Output - - (W,H,C)

Note: W and H indicate the spatial width and height of the input, while C
symbolizes the spectral resolution of the original HSI.

Table s2. The detailed architecture of the unmixing network.

3. Additional Visual Results

This research contributes to the HSI synthesis by introduc-
ing an innovative paradigm for high-dimensional data gen-
eration. Instead of generating HSIs in a high-dimensional
cube space, we propose generating them in abundance
space. This significantly simplifies the generation process.
Taking DDPM as an example, Figure 1 showcases this gen-
eration process over time steps for abundance synthesis.

Using the proposed ‘unmixing before fusion’ paradigm,
we employ StyleGAN3 and DDPM to generate some re-
sults, which are displayed in Fig. s2. For HSI synthesis
in remote sensing scenarios, we select the Chikusei HSI
datasets for training the unmixing network, and HSRS-
SC for its validation, and inference on the RGB dataset
AID. The RGB rendering examples are shown in Fig. s1
(a). As illustrated in Fig. s1 (b), these generated results
predominantly feature three typical scenes: farmland, city,
and building. It is evident that, under the guidance of the
proposed paradigm, various generation models can yield
a plethora of results with rich diversity, natural textures,
and high quality. Figs. s3 and s4 display the band-by-
band images of representative generated HSIs. These fig-
ures demonstrate that our generated results exhibit reason-
able spectral reflection within the visible light band range.

To further exemplify the potential of our generation
model, we provide the training and testing results of hy-
perspectral scene classification in Table 3. This is achieved
by integrating the generated results with the original HSRS
dataset and applying a standard classification model. We
reserved 100 HSIs from each category to form the test set,
leaving the remaining original data as the pre-augmentation
training set. This left only 385, 134, and 54 samples for
each category, leading to a severe class imbalance prob-
lem. To solve this issue, we supplemented these three cate-

gories with the HSIs generated in this study, bringing each
category up to 1000 samples. The enhanced test accuracy
across different models suggests that increasing the sample
size with generated data can effectively boost model perfor-
mance.

Moreover, we also generate results in naturally mixed
ground scenes. Fig. s5 (a) exhibits the multimodal training
and validation dataset used, while Fig. s5 (b) shows some
generated results using StyleGAN3 and DDPM under the
proposed framework. Fig. s6 shows some less satisfactory
generated results. Figs. s7 and s7 display the band-by-band
images of representative generated HSIs. Two main factors
contribute to these less than ideal results: data issues and
model limitations. From a data perspective, despite incor-
porating an RGB dataset to enhance sample diversity, the
training samples still suffer from data imbalance, which can
lead to unreasonable results in certain scenes. From a model
perspective, limitations in model architecture and difficulty
achieving global optimization during training may also re-
sult in less than satisfactory outcomes.

4. Discussion
4.1. Potential Benefits

Common RGB datasets such as ImageNet have already
amassed over 10 million images, greatly stimulating the de-
velopment of various computer vision tasks. However, the
largest existing HSI dataset, ARAD, consists of only 1,000
HSIs with a size of 482×512×31, hindering the promotion
and application of hyperspectral imaging. The proposed un-
mixing before fusion paradigm can generate extensive, di-
verse, and reliable HSI samples, alleviating the data scarcity
issue of HSI.

More than that, it also has a plethora of potential bene-
fits from both algorithm and application perspectives. For
instance, new synthesis HSI samples can be used to correct
the class skew problem in the existing dataset, provide more
validated training samples, reducing the overfitting problem
that is commonly found in the existing HSI classification
and target detection models. Furthermore, this technique
can lead to novel algorithms for HSI analysis and interpre-
tation, aiding in the detection and identification of objects
or materials of interest. It also has the potential to drive and
revolutionize applications in a range of fields, such as infer-
ring missing information for cultural heritage restoration,
offering realistic fake data for camouflage target recogni-
tion, and others.

4.2. Limitations and Future Work

From the model architecture perspective, while our unmix-
ing network has shown competitive performance in various
evaluations, it may benefit from the inclusion of specific
modules to further improve its efficacy. Nevertheless, the



Network parameter Training parameter
Num of layers Hidden size Bottleneck size Latent dim Skip threshold Learning rate Optimizer Weight decay EMA rate1

62 512 128 16 180 0.00015 Adam 0.0 0.00015
1 EMA rate: Exponential Moving Average rate.

Table s3. The key hyperparameters of the UBF+VDVAE.

Network parameter Training parameter
Latent space Z,W Mapping network Leaky ReLU R1 regularization Lazy regularization G,D Learning rate Optimizer

512 8 fully-connected layers 0.2 8.2 4 0.002 Adam

Table s4. The key hyperparameters of the UBF+StyleGAN3.

Network parameter Training parameter
Channel multiplier Attention channel Residual blocks Dropout Variance Steps Learning rate Optimizer

[1,2,2,4,4] 16 2 0.2 [1e-6,1e-2] 2000 1e-4 Adam

Table s5. The key hyperparameters of the UBF+DDPM.

primary aim of this study is to demonstrate that the end-
member and abundance representation can be adapted to
images other than HSIs. While endmember and abundance
representations are valid low-dimensional features for HSIs,
they also capture the typical composition and spatial distri-
bution of similar scenes for RGB images. It is worth not-
ing that our objective is to provide a general and versatile
backbone for HSI synthesis, rather than a heavily tuned ar-
chitecture.

On the other hand, to effectively apply the synthetic HSIs
we generate to downstream tasks, precise annotation of at-
tributes or semantic labels is essential. Fortunately, external
RGB data is already equipped with highly detailed labels
that can be leveraged for various visual tasks. Thus, our
future research efforts will not only involve incorporating
image information from external datasets, but also their cor-
responding label in semantic or properties to the generation
process, ultimately leading to the generation of labeled syn-
thetic HSIs.

Moreover, while our proposed unmixing before fusion
paradigm for HSI synthesis scheme has been demonstrated
using two modalities, HSI and RGB, we anticipate that it
could be extended to other modalities, such as PAN, MSI,
CT, MRI, and beyond.
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Tasks Training for Unmixing Validation for Unmixing Training for Generation

Datasets Chikusei (HSI) HSRS-SC (HSI) AID (RGB)

Imaging Sensor
The Headwall Hyperspec-
VNIR-C imaging sensor

The Compact airborne spectro-
graphic imager, CASI The Google Earth imagery

Spectral Range 363-1018nm→398-698nm 380-1050nm→398-698nm -
Spectral Resolution 128→59 48→59 3
Spatial Resolution 2.5m 1m 0.5-8m

Patch Size 2517×2335×128→128×128×59 256×256×59 256×256×3
Samples 1 HSI→840 patches 700 1902

Table s6. Detailed description of datasets adopted for HSI synthesis in the remote sensing scenario.

Tasks Training for Unmixing Validation for Unmixing Training for Generation

Datasets ARAD (HSI) Harvard (HSI) Place (RGB)

Imaging Sensor
Specim IQ mobile

hyperspectral camera
The Nuance CRi Multi-

spectral Imaging System-FX
From online image

search engines
Spectral Range 400-700nm 420-720nm -

Spectral Resolution 31 31 3
Spatial Resolution - - -

Patch Size 482×512×31→256×256×31 1300×1300×31 256×256×3
Samples 900 HSIs→3600 patches 45 10000

Table s7. Detailed description of datasets adopted for HSI synthesis in the natural mixed-ground scenario.

Generation Process in Timesteps
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Figure s1. Illustration of the synthetic abundances generation process within timesteps in the UBF+DDPM.



(a) Examples in adopted datasets

(b) Examples of synthetic HSIs generated by the UBF+StyleGAN3
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(c) Examples of synthetic HSIs generated by the UBF+DDPM
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Figure s2. RGB rendering examples of (a) adopted datasets, (b) generated synthetic HSIs by the UBF+Stylegan3, and (c) generated
synthetic HSIs by the UBF+DDPM (in bands 15,25,49).



Figure s3. Illustration on each band of the generated synthetic HSIs by the StyleGAN3 in the remote sensing scenario, and the last one is
the corresponding false-color image (based on bands 15, 32, 49).

Figure s4. Illustration on each band of the generated synthetic HSIs by the DDPM in the remote sensing scenario, and the last one is the
corresponding false-color image (based on bands 15, 32, 49).



(a) Examples in adopted datasets

(b) Examples of synthetic HSIs generated by the UBF+StyleGAN3

(c) Examples of synthetic HSIs generated by the UBF+DDPM

ARAD (HSI) Harvard (HSI) Place (RGB)

Figure s5. RGB rendering examples of (a) adopted datasets, (b) generated synthetic HSIs by the UBF+Stylegan3, and (c) generated
synthetic HSIs by the UBF+DDPM (in bands 7,17,27).
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Figure s6. Illustration of the unsatisfactory synthesis results.



Figure s7. Illustration on each band of the generated synthetic HSIs by the StyleGAN3 in the natural mixed-ground scenario, and the last
one is the corresponding false-color image (based on bands 7, 17, 27).

DMFigure s8. Illustration on each band of the generated synthetic HSIs by the DDPM in the natural mixed-ground scenario, and the last one
is the corresponding false-color image (based on bands 7, 17, 27).
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