
WonderJourney: Going from Anywhere to Everywhere

Appendix

A. Overview

We compile a set of video results in our project website. We
strongly encourage the reader to see these video results.
Please use a modern browser such as Chrome, since we use
advanced JavaScript libraries to control the carousels and
video auto-play.

In the following, we summarize the contents in this sup-
plementary document:

• [Section B] Additional qualitative results.
• [Section C] Longer “wonderjourneys”. Each “wonderjour-

ney” consists of 30 generated scenes.
• [Section D] Controlled “wonderjourneys” using user-

provided descriptions (rather than LLM-generated descrip-
tions), such as poems, story abstracts, and haiku.

• [Section E] Additional details on our renderer, camera
paths, and depth processing.

• [Section F] Ablation study on white space ratio, the visual
validation, and depth processing.

• [Section G] Additional details on the LLM and VLM we
use.

• [Section H] Details on human preference evaluation set-
ting.

B. Additional Results

We show additional results in Fig. 7 (going from anywhere)
and Fig. 8 (going to everywhere).

C. Longer “Wonderjourneys”

We show examples of longer “wonderjourneys” in Fig. 9. We
observe that the longer “wonderjourneys” allow including
more diverse scenes with high visual quality.

D. Controlled “Wonderjourneys”

We may replace the LLM-generated scene descriptions with
user-provided descriptions to control the generated “won-
derjourneys”. For example, one can use poems, haiku, or
story abstracts. We show examples of classical Chinese po-
ems, haiku, a nonsense poem “Jabberwocky” from Alice’s
Adventures in Wonderland, abstract of Walden by Henry
David Thoreau, Stopping by Woods on a Snowy Evening by
Robert Frost, and Lines Written in Early Spring by William
Wordsworth in Fig. 10.

E. Details on Visual Scene Generation

Depth processing. As mentioned in the main paper, we
find that depths of sky and distant pixels are estimated incor-
rectly. This is a general issue in monocular depth estimators,
although we choose to use MiDaS v3.1 [35]. For the seg-
mented sky pixels, we set the depth to 0.025. For distant
pixels, we set the background far plane F = 0.0015. Since
MiDaS is shift-invariant, we manually add a depth shift
0.0001 to ensure that the near objects do not collapse to the
optical center due to extremely small depth values. Note that
all these values (and all the depth estimator-related values
below) are specific to MiDaS v3.1, and it may need to be
changed for other depth estimators due to different normal-
ization schemes used in their respective training procedures.

The disparity threshold T in depth refinement is set to 2.
Empirically, we use the 30% and 70% depth values instead
of min and max depth values within a segment to compute
∆Dj to improve robustness due to segmentation inaccuracy.

In new scene registration by depth consistency, we adapt
MiDaS v3.1 for 200 iterations with learning rate 0.000001.
In occlusion handling, we set the depth of disoccluders to
0.05. In scene completion, we set the depth of newly in-
painted points to be the same as the depth of its valid nearest
neighbor pixel.
Sky processing. Empirically, we find that sky segmenta-
tion is generally not accurate enough especially along the
boundary of sharp shapes (such as tower spires) and complex
shapes (such as tree leaves). Therefore, we use the following
process to combat the inaccuracy. After using SAM to refine
depth, we use an aggressively eroded sky segmentation to
set depth values for sky pixels. Since SAM also segments
sky slightly more accurately (although it often gives over-
segments and it does not have semantic labels), we then use
SAM to refine depth again to take advantage of the added
accuracy. However, even SAM has difficulty in accurately
segmenting complex sky-object boundaries. Thus, we dilate
our outpainting mask a bit in the upper part of the image to
cover the potentially inaccurately segmented boundary.
Rendering. We use a perspective pinhole camera model. To
render the point cloud, we transform the points to a normal-
ized device coordinate space and rasterize them to determine
visibility. For each camera ray, we allow up to 8 points to re-
side in the z-buffer, and composite them using the following
softmax-based function to avoid alias:

disparity =

∑
i exp(disparityi) ∗ colori∑

i exp(disparityi)
, (7)

where i = 1, · · · , 8 indexes the points in the z-buffer. Higher



Input image Generated wonderjourneys (rendering of generated sequences of 3D scenes)

Figure 7. Additional qualitative results for “wonderjourneys”. The inputs in the top four rows are real photos. The inputs in top four rows
are real photos.



Input image Diverse wonderjourneys (rendering of generated sequences of 3D scenes)

Figure 8. Qualitative results for diverse “wonderjourneys” generated from the same input image. The inputs in the top example is a real
photo.

disparity values put higher weights on nearer points. At the
boundary of objects, occluded points can also provide some
blending for anti-aliasing. Our image resolution is 512×512.

Camera paths. To generate visual scenes, we move our
camera either following a straight line, or to do a rotation.
For the straight line, we use a camera movement of 0.0005
to the backward. For rotation, we move our camera with a
rotation of 0.45 radians with a translation of 0.0001.

To generate the additional camera paths, we use the fol-
lowing rules: For a generated scene by rotation, we inter-
polate linearly among the camera rotation radians. For a
generated scene by straight line, we linearly interpolate the
translation. The additional cameras are also used in making
our video results. Therefore, we also add a random sine
perturbation to the height of the additional cameras. For
the starting scene, the ending scene, and scenes right before



Real input photo Long wonderjourneys (rendering of generated sequences of 3D scenes)

Figure 9. Qualitative results for long “wonderjourneys” generated from real input photos. Each long “wonderjourney” here consists of 30
scenes, yet we show 15 of them. See our website for video results.

and right after rotation happens, we add a linear acceleration
process to make the video smoother.

F. Ablation Study

Outpainting white space. In Fig. 11, we show a comparison
with the following variant, “Ours-slower”. “Ours-slower”
uses a 1/10 speed and generating 10 scenes following a

straight line camera path (see Section E for more details
on the camera path), so that it ends up at the same camera
location as “Ours”. We use the same input image and the
same scene description which includes “houses” in it. From
Fig. 11 we observe that when we have insufficient empty
space for outpainting, new objects like houses do not appear.
This empirical observation may be due to that in the curated
training set of the Stable Diffusion model, there may be few



Input text Generated wonderjourneys (rendering of generated sequences of 3D scenes)

莫笑农家腊酒浑，
丰年留客足鸡豚。
山重水复疑无路，
柳暗花明又一村。
箫鼓追随春社近，
衣冠简朴古风存。
从今若许闲乘月，
拄杖无时夜叩门。

双飞燕子几时回，
夹岸桃花蘸水开。
春雨断桥人不渡，
小舟撑出柳阴来。

遠山に，
日の当たりたる，
枯野かな。

千山鸟飞绝,
万径人踪灭。
孤舟蓑笠翁，
独钓寒江雪。

Jabberwocky:

Fighting…
Hero returns…

Storyteller…

Walden:

Thoreau’s arrival…
Self-sufficiency…
Pond in winter…

Lines Written in 
Early Spring:

Sit in grove…
Flower breathes…
Birds around me…

Stopping by woods 
on a snowy evening:

Whose woods…
My little horse…

Frozen lake…

Figure 10. Qualitative results for controlled “wonderjourneys” generated from text descriptions (except for the “Jabberwocky” example
where we manually pair it with an image). Each controlled “wonderjourney” here consists of 2N scenes where N is the number of parts of
the text (e.g., a classical Chinese poem often has 4 or 8 parts). See our website for video results.



Input image Ours-slower
Small outpainting space

Ours
Sufficient outpainting space

Figure 11. Ablation comparison on sufficient outpainting space.
Both examples use the same scene descriptions including “houses”
in it. Only “Ours” that has sufficient outpainting space can generate
houses.

Input image w/o visual validation (a border appears and disrupts)

w/ visual validation (no border problem)Input image

Figure 12. Ablation comparison on using a VLM to visually
check if borders appear. Without visual validation, borders often
appear and it disrupts the following scenes. Red boxes highlight
the border disruptions.

partial cropped objects around the image borders. Thus, the
outpainting model does not prefer generating partial objects
along the borders.

Visual validation by a VLM. As mentioned in Section E, the
painting frame and photo border can be a strong disruption.
We show an example in Fig. 12, where the photo border
appears and disrupts the next generated scene. The visual
validation can effectively detect borders and launch a re-
generation process to handle it.

Depth processing. Our depth processing is essential in
generating geometrically coherent scenes. In Fig. 13, we
show a visual comparison, where we show the rendered
partial images using the original estimated depth and using
our processed depth. Without our depth processing, the
partial rendered images show strong distortions due to depth
inaccuracy in object boundary, sky, and distant areas. For
example, see the distortions in the sky (bottom example),
the bird (middle example), and the tower (top example) in

Input image w/o depth processing w/ our depth processing

Figure 13. Ablation comparison on our depth processing. Zoom
in to see more details. Without our depth processing, the rendered
partial image demonstrates strong distortions. For examples, see
the sky (bottom example), the bird (middle example), and the tower
(top example).

Fig. 13.

G. Details on the LLM and VLM

We use GPT-4 for generating scene descriptions. Specifically,
we use the following prompt J for the system call:

“You are an intelligent scene generator. Imaging you are
flying through a scene or a sequence of scenes, and there
are 3 most significant common entities in each scene. Please
tell me what sequentially next scene would you likely to
see? You need to generate the scene name and the 3 most
common entities in the scene. The scenes are sequentially
interconnected, and the entities within the scenes are adapted
to match and fit with the scenes. You also have to generate
a brief background prompt about 50 words describing the
scene. You should not mention the entities in the background
prompt. If needed, you can make reasonable guesses.”

The input is the scene description memoryM which is
a collection of past and current scene descriptionsMi =
{S0, · · · ,Si} as defined in Equation 2. In particular, Si =
{S,Oi, Bi} where S denotes a style, Oi denotes the object
description, and Bi denotes the background description. We
use a lexical category filter to extract nouns and adjectives.
An actual scene description Si looks like (the following is
the actual text prompts of the “girl in wonderland” example
in Fig. 1):



• Scene 1: {Background: Alice in the wonderland. Entities:
[’ Alice’, ’ flowers’, ’ cat’]; Style: Monet painting}

• Scene 2: {Background: luminous painting, way, vibrant
bizarre croquet field, player, flamingo, mallet, Hedgehogs,
balls, croquet, balls, life, domineering presence, atmo-
sphere. Entities: [’flamingos’, ’hedgehogs’, ’The Queen
of Hearts’]; Style: Monet painting}

• Scene 3: {Background: scene, bizarre tea, party, great elm,
tree, eccentric gentleman, top hat, presides, celebration,
jittery hare, sleepy rodent, Cups, plates, assorted pastries,
ancient misshapen, table, atmosphere, chaotic random
bouts, nonsensical poetry, riddles. Entities: [’Mad Hatter’,

’March Hare’, ’Dormouse’]; Style: Monet painting}
• Scene 4: {Background: impressionist strokes, endless

checkerboard, landscape, animate chess, pieces, rules,
game, sense, tension, serene, countryside, ambiance, trees,
strange fruits, flowers. Entities: [’White Queen’, ’Red
Queen’, ’Pawn’]; Style: Monet painting}
We use GPT-4V as the VLM for visual validation. The

most significant unwanted effects are the painting frame and
photo border that appear along some of the four boundaries
of the outpainted image. We use the following system call:

“Along the four borders of this image, is there anything
that looks like thin border, thin stripe, photograph border,
painting border, or painting frame? Please look very closely
to the four edges and try hard, because the borders are very
slim and you may easily overlook them. If you are not sure,
then please say yes.”

We also use similar prompt for detecting out-of-focus
blurry objects. If GPT-4V fails due to network connection
or other practical reasons, we instead generate an 560× 560
image and then center-crop it to bypass the frame problem.
This is not as good as using visual validation, because it can
lead to cropped partial foreground objects such as a half of
a person, and the partial objects can become floaters due to
low depth values when we move camera to generate new
scenes.

H. Details on Human Preference Evaluation
We use Prolific1 to recruit participants for the human prefer-
ence evaluation. We use Google forms to present the survey.
The survey is fully anonymized for both the participants
and the host. We attach the anonymous survey link in the
footnote2 for reference.

1https://www.prolific.com/
2Comparison to InfiniteNature-Zero: https://forms.gle/

mKxyJUT3qZLs2f8h9; Comparison to SceneScape: https://
forms.gle/pt7NBj73Fnd5apjM8. Google forms require signing
in to participate, but it does not record participant’s identity.

https://www.prolific.com/
https://forms.gle/mKxyJUT3qZLs2f8h9
https://forms.gle/mKxyJUT3qZLs2f8h9
https://forms.gle/pt7NBj73Fnd5apjM8
https://forms.gle/pt7NBj73Fnd5apjM8

	. Introduction
	. Related Work
	. Approach
	. Scene description generation
	. Visual scene generation
	. Visual validation

	. Experiments
	. Conclusion
	. Overview
	. Additional Results
	. Longer ``Wonderjourneys''
	. Controlled ``Wonderjourneys''
	. Details on Visual Scene Generation
	. Ablation Study
	. Details on the LLM and VLM
	. Details on Human Preference Evaluation



