
CADTalk: An Algorithm and Benchmark for Semantic Commenting
of CAD Programs

Supplementary Material

7. Additional Results

7.1. Commenting on ShapeCoder [19] Programs

While the machine-made programs in our dataset exhibit a
flat structure, methods like ShapeCoder [19] can automati-
cally discover abstractions within flat programs to form li-
braries of nested functions. We have tested CADTalker on
the abstracted shape programs from ShapeCoder.
Data processing and running. Since ShapeCoder only
provides a simple executor that produces line renderings
(Fig. 6 (a)), we resort to OpenSCAD as an alternative ex-
ecutor to obtain 3D shapes suitable for depth map rendering.
Specifically, as shown in Fig. 6, for each ShapeCoder pro-
gram, we first use its default executor to transform the pro-
gram into cuboid primitives represented by a set of param-
eters (e.g., height, width, and translation). We then trans-
late these cuboid primitives into an OpenSCAD program,
which can be executed to get the required depth map. After
the translation, each line of the ShapeCoder program cor-
responds to one or more OpenSCAD code lines. We run
CADTalker to generate the semantic comment for each line
and aggregate these comments for each ShapeCoder line by
a simple non-repetitive merging. We transfer the semantic
comments back to the ShapeCoder program by exploiting
the recorded program line and code block correspondence.
Results. Fig. 7 (a) shows typical results of our algorithm on
programs produced by ShapeCoder. While our comments
convey the semantic meaning of the ShapeCoder functions,
they also reveal that because the ShapeCoder algorithm
solely works on geometry, it produces functions that mix se-
mantic parts (Fig. 7 (b)). This experiment suggests that au-
tomatic commenting could serve as a way to evaluate the se-
mantic coherence of automatically generated code macros.

7.2. Semantic Commenting using ChatGPT

The key idea of the algorithm we have proposed –
CADTalker– is to execute and render the CAD shape to cast
program commenting as an image segmentation task. While
our evaluation on CADTalk demonstrates the effectiveness
of this image-based strategy, it has some limitations. First,
object parts can be occluded in most of the views, and as
such do not get labeled. Similarly, small parts that only
cover a few pixels tend to be ignored. Second, while our
use of image-to-image translation greatly reduces the do-
main gap between renderings and photographs, the images
we obtain might still contain unrealistic details that are dif-
ficult to recognize.

Table 5. Different configurations when interacting with GPT-4 to
comment on a cuboid airplane program. Each row (b-e) corre-
sponds to a different commented example provided to GPT-4 for
one-shot training.

Option Teach Example Program Bacc(↑)
a ✗ ✗ 31.88
b ✓ AirplaneCube (partial) 52.5
c ✓ AirplaneEllip 37.5
d ✓ AirplaneCube 87.5
e ✓ ChairCube 44.37

These limitations motivated us to also experiment with a
program-based strategy, for which visibility and appearance
are irrelevant. Specifically, inspired by recent successes of
few-shot training of LLMs for code commenting [2, 6], we
instructed ChatGPT-v4 to comment on an airplane program
from our CADTalk-Cube dataset. In addition to the program
to be commented on, we also provided ChatGPT with the
list of part names (i.e., ’body’, ’wings’, ’tail’, and ’engine’),
as illustrated in Fig. 8, top row.

Within this setup, we tested five different configurations
of the commenting task, as listed Tab. 5 where the super-
script indicates the source of the example program.
• Option (a): zero-shot prediction, no additional informa-

tion is provided to ChatGPT.
• Option (b): one-shot prediction, the example is incom-

plete and comes from the same airplane category in
CADTalk-Cube.

• Option (c): one-shot prediction, the example is com-
plete but made of different primitives (i.e., ellipsoid) from
CADTalk-Ellip.

• option (d): one-shot prediction, the example is complete
and comes from the same airplane category in CADTalk-
Cube.

• option (e): one-shot prediction, the example is complete
but from the chair category in CADTalk-Cube.

In all cases, we shuffle the code blocks of both the task
program and the example program to avoid any influence
of ordering. This experiment reveals that, to our surprise,
a single example is enough for ChatGPT to successfully
comment programs that represent the same object category,
with the same geometric primitives (configuration d). When
asked to explain its answer, ChatGPT reported using the
volume and relative position of the parts as evidence, such



Union(Abs_19(0.68,0.09,0.24,0.74,
0.14,-0.17)

Union(Abs_18(0.06,0.6,0.3.-0.17) 
Union(

Move(SymTrans(Cuboid(0.08.0.79.0.
08)2*.0.31 -0.26.0.27.-0.18), 

Move(Symirans(Cuboid0.08,0.79,0.0
8), AX,INT#1#,0.14),0.14,0.27,-
0.25)))
)

[(0.68, 0.09, 0.24, -0.04, 0.74, -0.22, 0.0, 0.0, 0.0),
(0.68, 0.14, 0.68, -0.04, -0.17, 0.05, 0.0, 0.0, 0.0)]

[(0.06, 0.6, 0.06, -0.34, -0.47, 0.3, 0.0, 0.0, 0.0), 
(0.06, 0.6, 0.06, 0.34, -0.47, 0.3, 0.0, 0.0, 0.0), 
(0.06, 0.63, 0.06, -0.34, -0.47, -0.17, 0.0, 0.0, 0.0), 
(0.06, 0.63, 0.06, 0.34, -0.47, -0.17, 0.0, 0.0, 0.0)]

[(0.08, 0.79, 0.08, -0.26, 0.27, -0.18, 0.0, 0.0, 0.0),
(0.08, 0.79, 0.08, -0.11, 0.27, -0.18, 0.0, 0.0, 0.0), 
(0.08, 0.79, 0.08, 0.05, 0.27, -0.18, 0.0, 0.0, 0.0)]

[(0.08, 0.79, 0.08, 0.14, 0.27, -0.25, 0.0, 0.0, 0.0),
(0.08, 0.79, 0.08, 0.28, 0.27, -0.25, 0.0, 0.0, 0.0)]

CADTalker

(a)

(b)

(c)

(d)

Figure 6. ShapeCoder Program Processing. Given a ShapeCoder program (a), we first execute the program to obtain all primitive
parameters, i.e., a set of cubes represented by width, height, length, rotation, and translation (b). Then, we translate these primitives into
an OpenSCAD program (c) and run our CADTalker (d). The colorful boxes indicate the line-parameter-code block correspondence.

//label: seat, back
Union(Abs_19(0.68,0.09,0.24,0.74,
0.14,-0.17)
//label: leg
Union(Abs_18(0.06,0.6,0.3.-0.17) 
Union(
//label:back
Move(SymTrans(Cuboid(0.08.0.79.0.
08)2*.0.31 -0.26.0.27.-0.18), 
//label:back
Move(Symirans(Cuboid0.08,0.79,0.0
8), AX,INT#1#,0.14),0.14,0.27,-
0.25)))
)

//label: back
Union(Abs 28(0.68,0.77,-0.18)
//label: leg
Union(Abs 18(0.07,0.62,0.33,-0.29)
//label: seat
Move(SymTrans(Cuboid(0.74,0.07,0.
86),AX,INT#1#,0.01),0.0,-
0.06,0.0)))

//label: back, leg
Union(Abs 21(0.88,0.31,0.35)
//label: seat
Union(Abs 6(0.88,0.19,-0.16)
//label: leg
SymRef(Abs 1(0.15,0.52,-0.37,-0.51),AX)))

//label: leg, back
SymRef(Union(Abs_1(0.04,0.99,-
0.26,0.42),Union(Abs_1(0.03,0.7,0.3,-
0.56), Abs_1(0.05,0.79,-0.3,-0.52))),AX)
//label: seat
Abs_6(0.69,0.14,-0.15)
//label: back
Move(SymTrans(Cuboid(0.62,0.01,0.1),AY,IN
T#5#,0.42),0.02,0.43,-0.26)
//label: back
Move(SymRef(Move(Cuboid(0.62,0.01,0.1),0.
02,-0.15,0.01),AY),0.0,0.71,-0.27)

(a) (b)
Figure 7. (a) Four typical commenting results on ShapeCoder programs with colored boxes indicating the comment-shape correspondence.
(b) ShapeCoder [19] identifies redundancy in shape datasets to generate code macros (red blocks) that encapsulate common parts. While
our approach produces descriptive comments for these macros (blue comments), the macros themselves do not always correspond to
isolated semantic parts (bottom blue comments).

as the fact that the body should have the biggest volume,
while the wings should be attached on the two sides of the
body 1. However, the other configurations (b,c,e) reveal that
these spatial reasoning skills do not extend to examples that
are incomplete, of another category, or made of different
primitives. A small-scale statistical evaluation of these con-

1GPT is trained to produce the next word given the prompt, we are not
sure if it effectively used volume and positions to solve the task. It is an
interesting research direction to reveal the mechanisms of GPT.

figurations with 10 testing examples is reported in Tab. 5,
which is consistent with the above analysis and the visual
results in Fig. 8, where the configuration (d) achieves the
best result.

The full conversations with ChatGPT-v4 can be found in
a separate file titled “GPT-Conversation.pdf” on the project
page.



Table 6. Statistical Comparison with PartSLIP and its variants.

Dataset
CADTalk-Cube CADTalk-Ellip

CADTalk-CubeH CADTalk-CubeL CADTalk-EllipH CADTalk-EllipL

Methods PS PS++ Ours PS PS++ Ours PS PS++ Ours PS PS++ Ours

Metric Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU

Chair 62.81 59.74 64.51 59.35 90.02 84.34 74.24 60.29 74.90 59.60 92.28 91.11 64.92 57.46 64.94 57.20 77.66 71.29 66.86 52.23 67.54 51.99 71.41 57.95

Airplane 21.94 9.76 29.36 11.94 85.03 77.76 14.40 8.01 22.71 12.24 75.65 68.40 23.16 8.95 25.15 9.84 74.78 65.77 19.74 8.56 23.99 10.40 72.52 69.90

Animal 41.94 32.26 59.07 34.65 89.07 82.75 44.69 41.70 55.55 44.47 89.03 85.68 33.96 25.54 44.12 29.71 91.28 83.14 29.96 24.37 42.94 25.86 91.90 86.08

Table 40.90 33.43 64.98 49.64 90.88 86.33 37.60 27.55 65.61 49.50 95.76 93.50 38.38 35.02 63.34 45.09 83.06 74.71 43.05 32.04 61.38 53.66 81.21 75.76

Average 41.90 33.80 54.48 38.89 88.75 82.80 42.73 34.39 54.69 41.45 88.18 84.67 40.10 31.74 49.39 35.46 81.69 73.73 39.9 29.30 48.96 35.48 79.26 72.42

a b

d e

c

GT

unsuretailEnginebodywing

Figure 8. ChatGPT commenting results under different configura-
tions.

7.3. Comparison with PartSLIP

In Sec. 5.3, we have described the comparison with Part-
SLIP regarding block accuracy. Here, we elaborate on the
details and provide more statistical and visual results.

Data processing and running. Taking as input a dense
and colored 3D point cloud and part names as prompts,
PartSLIP predicts point-wise labels belonging to the part
names. To compare, we first execute each program from
CADTalk to obtain a 3D model and densely sample it with
200K points with normal and a uniform gray color (see
Fig. 9, PartSLIP Input). As for the point-based rendering,

we implemented a simple Phong shading2 to produce the
images fed to PartSLIP. In the sampling process, we record
the point-block correspondence for label transferring using
a similar binary mask based registration procedure as de-
scribed in Sec. 3.3. This resulting point cloud is fed into
PartSLIP to obtain point-wise labels. We then aggregate
the point-wise labels of each commentable block by choos-
ing the label with the highest number of votes and simply
transfer the resulting label back to the shape program as the
predicted comments.
Results. Full statistics with both the block accuracy (Bacc)
and the semantic IoU (SIoU ) are shown in Tab. 6, where we
obtain far better results compared with PartSLIP and Part-
SLIP++. As for the human-made program, the block ac-
curacy for PartSLIP, PartSLIP++, and ours are 38.17% vs.
39.24% vs. 78.29%, while the semantic IoUs are 27.25%,
and 27.73%, and 66.22%, respectively. Visual Results can
be found in Fig. 9. PartSLIP fails this zero-shot point cloud
segmentation task on both machine-made and human-made
programs in our context. This is mainly attributed to Part-
SLIP’s strong dependency on point clouds that incorporate
realistic colors, a feature frequently absent in program rep-
resentations. This failure is further evidenced in our abla-
tion study, wherein the exclusion of ControlNet (w/o CN)
results in notably reduced evaluation metrics.

7.4. Comparison with SATR

As discussed in Sec. 2 and Sec. 5.3, our task can be con-
sidered as a zero-shot, open-set 3D part segmentation prob-
lem. Other than PartSLIP, we preliminarily compare our
method with SATR [1], the state-of-the-art zero-shot 3D
mesh segmentation method. Qualitative results are shown
in Fig. 10, where mesh segmentations are competitive on
the realistic horse, but SATR struggles on the more ab-
stracted Moai sculpture and fails on the abstracted airplane.
The reason is the gap between the rendered images from

2The original PartSLIP code for point-based rendering does not apply
any shading because it assumes that the input point cloud is a 3D colored
scan. We replaced that code with our simple Phong shading. Some num-
bers reported in Tab. 4 of our submission were computed with the original
rendering, which resulted in a lower performance. Nevertheless, even with
better shading, PartSLIP’s results are far inferior to ours. We will revise
the numbers upon acceptance.



head beak body eyes wing

wing body tail engine

PartSLIP Prediction PartSLIP Aggregation CADTalkerPartSLIP Input

tailnone

none

PartSLIP Input PartSLIP Prediction PartSLIP Voting CADTalker

Figure 9. Visual Comparison with PartSLIP. Due to the absence of realistic colors, the raw prediction of the per-point label is noisy,
leaning toward missing many points (the black color). After the label aggregation, errors are still obvious, e.g., the tail and most of the
body of the airplane are mislabeled, while the head, beak, and eyes of the bird are totally wrong.

Figure 10. Visual Comparison with SATR. The first row shows
the results from SATR, while our results are in the second row.

abstracted shapes and the photographs used for training
the large image-language model, while ControlNet in our
pipeline solves this problem effectively.

7.5. OpenLLM Model Test

Our pipeline is highly modular and not restricted to GPT4,
we thus test our algorithm with the open-source Llama2-
70B model. Statistical results are displayed in Table 7,
where performance degradation is observed. For exam-
ple, with Llama2-70B, the Bacc is dropped from 88.75%
to 82.96% and SIoU is dropped from 82.75% to 75.43% on
CADTalk-CubeH programs. As for the real human-made
programs in CADTalk-Real, Llama2-70B achieves 70.88%
and 57.97% for block accuracy and semantic IoU, which
are reduced by 7.4% and 8.3% compared with GPT-4 (i.e.,
78.29% and 66.22%, respectively). Once a more powerful
LLM is available, our method can enjoy the improvement

without any special tunning.

7.6. Additional Commenting Results

Typical commenting results can be seen on the accom-
panying webpage with highlighted code and block an-
imations, and more commenting results from all data
tracks in CADTalk can be found in a separate file titled
“Commenting-Results.pdf” on the project page. In the fol-
lowing, we introduce typical failure cases.
Failure cases. In Fig. 11, we illustrate typical failure cases
of our method, which are mainly inherited from founda-
tional vision-language models, i.e., ControlNet may ignore
fine details of the input depth map or generate totally un-
recognizable images, and Grounding DINO may mislabel
parts that can be seen clearly in the image.

To address these issues, potential solutions include a) uti-
lizing stronger vision-language models with enhanced con-
ditional generation ability, and more robust detection abil-
ity and b) implementing an image discriminator to exclude
problematic images, which we leave for future work.

8. Method Details
8.1. Implementation Details

For depth map processing, we use morphological closing
[15] with varied configurations. Specifically, we apply 5
iterations of closing for the abstract shapes of CADTalk-
CubeH and CADTalk-EllipH , 3 iterations for CADTalk-
CubeL and CADTalk-EllipL, and 1 iteration for CADTalk-
Real, using a 3 × 3 structuring element. When using Con-
trolNet [47], we set the control strength to 1.0, DDIM sam-



Table 7. Comparison between GPT words and LLAMA2 words on the full dataset.

Dataset
CADTalk-Cube CADTalk-Ellip

CADTalk-CubeH CADTalk-CubeL CADTalk-EllipH CADTalk-EllipL

Input Text GPT Words LLAMA2 Words GPT Words LLAMA2 Words GPT Words LLAMA2 Words GPT Words LLAMA2 Words

Metric Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU Bacc SIoU

Airplane (4 parts) 85.03 77.76 85.71 78.28 75.65 68.40 77.32 71.51 74.78 65.77 77.43 71.19 72.52 65.90 75.90 70.66

Chair (4 parts) 90.02 84.34 87.18 77.33 92.28 91.11 91.47 88.11 77.66 71.29 75.49 68.56 71.41 57.95 68.99 55.30

Table (2 parts) 90.88 86.33 80.71 73.47 95.76 93.50 88.19 79.96 83.06 74.71 74.35 61.27 81.21 75.76 78.23 67.11

Animal (4 parts) 89.07 82.55 78.26 72.65 89.03 85.68 86.82 86.46 91.28 83.14 75.19 74.85 91.90 86.08 71.05 70.29

Average 88.75 82.75 82.96 75.43 88.18 84.76 85.95 81.51 81.70 73.73 75.62 68.97 79.26 71.42 74.54 65.84

(a) (b) (c)
Figure 11. Failure Cases. (a) ControlNet fails to generate scarf tassels. (b) ControlNet generates an unexpected image given a turkey
depth map and keyword, as if it confused “turkey” (bird) with “Turkey” (country). (c) Grounding DINO wrongly predicts the broom to be
‘head’.

pling steps to 20, the image instance number to 4, and
the image resolution to 512 × 512. We use a simple text
prompt template – “[CateName], realistic” for ControlNet,
where [CateName] is the category name, e.g., Chair. We
employ default parameter configurations from Grounding
DINO [27] and SAM [21] without additional adjustments or
tuning. For our voting scheme, we render depth maps from
10 viewpoints that are evenly distributed around a circular
path centering on the object’s up axis and maintaining an el-
evation angle of 55 degrees above the object. When filling
in the cumulative confidence score, we progressively ad-
just the filtering threshold in the aforementioned three steps
(Sec. 3.3), setting it at 0.001, 0.01, and 0.02, respectively.
Running Time. All experiments were conducted with a
single RTX3090 GPU. Using our unoptimized code, for a
program with 200 lines, the overall running time is around
6mins, distributed as 0.2% for program parsing, 1.1% for
depth images rendering, 85.1% for ControlNet, 0.7% for
prompt querying, 12.5% for DINO+SAM and 0.3% for vot-
ing.

8.2. Program Parsing

In Sec. 3.3, we introduced program parsing that produces
an Abstract Syntax Tree (AST), laying the foundation for
our commenting task. To do this, we exploit Lark [12] to
conduct lexical and syntax analysis following the Open-

SCAD grammar, and the analysis procedure generates an
analysis tree, which is equivalent to the original program
and wherein all the operation information is stored in the
node and the code structure is maintained in the tree struc-
ture. Then, we construct the AST by traversing the analysis
tree, and choose the required information, i.e., node type
and line number, from the tree node. Example AST of a
simple program is shown in Fig. 14, and more trees of pro-
grams in CADTalk can be found in the file titled “AST.pdf”
on the project page.

9. CADTalk Dataset

9.1. Dataset Overview

To facilitate evaluation and foster future research on the
semantic CAD program commenting task, we have intro-
duced a new benchmark – CADTalk, a dataset of Open-
SCAD programs enriched with part-based semantic com-
ments. Tab. 8 shows detailed statistics per category of each
data track, including the number of code lines, and the num-
ber of parts.

We considered two distinct sources of programs, i.e.,
human-made and machine-made programs, in our dataset.
Since it is difficult to find and manually comment on real
shape programs, we only gathered 45 such programs with
rich shape and program diversity and we plan to keep col-



lecting more in the future. For machine-made programs,
we rely on automatic methods that convert 3D shapes into
cuboid [41] and ellipsoid [28]. One feature of this data track
is the two levels of details of the programs, where the ones
with a high level of detail reconstruct the shape well but
have more lines to comment on, while the others with a low
level of detail are harder to recognize due to the abstraction.
See Fig. 12 for an example.

87 31 7

Figure 12. Shape abstraction levels. A chair in CADTalk-Ellip
with different numbers of ellipsoids.

Table 8. Detailed CADTalk Statistics. The number of programs,
lines of code, and the number of parts per category for each data
track are listed.

Category #Programs #Lines (min, median, max) #Parts

CADTalk-CubeL

airplane 400 (40, 40, 40) 4

chair 400 (66, 66, 66) 4

table 400 (21, 21, 21) 2

animal 122 (40, 40, 40) 4

CADTalk-CubeH

airplane 400 (72, 72, 72) 4

chair 400 (162, 162, 162) 4

table 400 (61, 61,61 ) 2

animal 122 (72, 72, 72) 4

CADTalk-EllipL

airplane 400 (37, 100, 242) 4

chair 400 (27, 147, 672) 4

table 400 (7, 101, 1077) 2

animal 122 (62, 112, 166) 4

CADTalk-EllipH

airplane 400 (32, 163, 237) 4

chair 400 (57, 261, 842) 4

table 400 (27, 178, 1172) 2

animal 122 (27, 152, 245) 4

CADTalk-Real real 45 (28, 120, 381) 2-10

9.2. Evaluation Metrics

We have proposed two metrics to evaluate the performance
of algorithms on the new task of commenting CAD pro-
grams. In the following, we introduce the formulations to
calculate them.
• Block accuracy is the block-wise labeling accuracy, de-

fined as:
Bacc =

m

n
, (2)

where m counts the number of blocks that get the correct
label and n is the total number of blocks.

• Semantic IoU measures the Intersection-over-Union
value per semantic label, averaged over all labels:

SIoU =
1

K

∑
k

{lk} ∩ {l∗k}
{lk} ∪ {l∗k}

, (3)

where K is the number of labels, {lk} is the set of code
blocks predicted to be of the kth label, {l∗k} is the set of
code blocks with the kth label as ground truth.

9.3. Machine-made Program Processing

Given machine-generated shape primitives of ShapeNet
models, we turn them into OpenSCAD programs and then
conduct automatic labeling and manual refinement.
Program Translation. Given the cube or ellipsoid primi-
tives represented by corresponding parameters, we trivially
translate these primitives into OpenSCAD cube or ellipsoid
primitives, following the same procedure as described in
Fig. 6. Specifically, we translate a cube represented by its
eight corners into the native cube primitive in OpenSCAD,
while we translate an ellipsoid presented by its semi-axe
lengths, rotation, and translation parameters into the native
ellipsoid primitive in OpenSCAD.
Automatic Labels Transferring. Since cubes or ellipsoids
are generated based on 3D models from PartNet, the exist-
ing part labels in PartNet can be utilized for part label as-
signment. Specifically, given a shape program, we first con-
vert the corresponding PartNet shape into a point cloud with
per-point labels. We then compare the part shape generated
by each code block to the labeled point cloud by checking
the IoU, and obtain the corresponding part label by maxi-
mum voting. For a part, e.g., the airplane engine, it may
occupy both the wing and engine areas, we thus keep all
valid labels in the voting.
Label Refinement with a Developed UI. For further re-
finement of the automatically generated labels, we also de-
veloped an interactive UI (Fig. 13) to directly review and
adjust labeled programs in CADTalk by simple mouse click-
ing and keyboard hitting.



Figure 13. User Interface. The interface enables users to effi-
ciently go through programs and adjust labels.



startline:1

m
odule_defline:1

m
odule_defline:6

m
odule_callline:11

m
odule_callline:12

m
odule_headerline:1

m
odule_scope

line:1

func_nam
e
line:1

arg

A

m
odule_callline:3

m
odule_headerline:6

m
odule_scope

line:6

func_nam
e
line:6

arg

B

m
odule_callline:7

m
odule_headerline:7

m
odule_scope

line:8

func_nam
e
line:7

arg
line:7

translate
listline:7

list_item
line:7

list_item
line:7

list_item
line:7

num
berline:7

1

num
berline:7

1

num
berline:7

1

m
odule_callline:8 m

odule_headerline:11
;

func_nam
e
line:11

arg

A

m
odule_headerline:12

;

func_nam
e
line:12

arg

B

module A(){
cube([1,1,1]);

}module B(){
translate([1,1,1])
sphere([3]);

}A();
B();

Figure 14. Abstracted Syntax Tree (AST). Each node in the AST maintains the operation type and the corresponding line number for
pixel-block registration.


	. Introduction
	. Related Work
	. Commenting Programs with CADTalker
	. Realistic Multiview Rendering
	. Part Detection and Segmentation
	. Part Label Voting

	. Building the CADTalk Dataset
	. Collecting CAD Programs
	. Evaluation Metrics

	. Experiments
	. Results
	. Ablation Study
	. Comparison with PartSLIP liu2023partslip
	. Commenting on Machine-made Macros
	. Semantic Commenting using ChatGPT

	. Conclusion
	. Additional Results
	. Commenting on ShapeCoder jones2023shapecoder Programs
	. Semantic Commenting using ChatGPT
	. Comparison with PartSLIP
	. Comparison with SATR
	. OpenLLM Model Test
	. Additional Commenting Results

	. Method Details
	. Implementation Details
	. Program Parsing

	. CADTalk Dataset
	. Dataset Overview
	. Evaluation Metrics
	. Machine-made Program Processing


