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Supplementary Material

In this Appendix, we first detail on the potential so-
cietal impact (Appendix A), and limitations and poten-
tial future work (Appendix B). Subsequently, we pro-
vide additional details about implementing LoRA (Ap-
pendix C) and user study (Appendix D). Moreover, we
provide more visualization results to demonstrate the effi-
cacy of InstructVideo (Appendix E). Next, we pro-
vide experiments to validate the efficacy of generation
with 50-step DDIM inference (Appendix F), reward fine-
tuning with 50-step DDIM inference (Appendix G) and
InstructVideo’s adaptation to other reward functions
(Appendix H). Finally, we present more ablation studies to
demonstrate the necessity of SegVR and TAR (Appendix I),
the extreme case of TAR (Appendix J) and more compre-
hensive evaluation using CLIPSIM and Temporal Consis-
tency (Appendix K).

A. Potential Societal Impact
InstructVideo, as the pioneering effort in instructing
video diffusion models with human feedback, prioritizes
users’ preferences for AI-generated content. We conducted
this research, motivated by the varied quality of generated
videos induced by the varied quality of the curated web-
scale datasets. Pre-training models on such unfiltered data
can lead to outputs that deviate from human preferences. In
the context of the broader research community, we advo-
cate that video generation systems, akin to other generative
models like language models [7, 8], should prioritize ethical
considerations and human values.

Moreover, conventional video generation systems might
not always resonate with all users in terms of aesthetic
style and often struggle with accurately reflecting textual
prompts. InstructVideo steps in as a human-centered
technology, efficiently addressing these issues in a data- and
computation-efficient way and opening up possibilities for
commercial applications, particularly in sectors like educa-
tion and entertainment.

However, as InstructVideo primarily targets re-
search, aiming at investigating the practicality of aligning
video diffusion models with human preferences, its deploy-
ment to any circumstance beyond research should be ap-
proached with thorough oversight and evaluation to ensure
responsible and ethical use.

B. Limitation and Future work
We recognize that InstructVideo, as an initial en-
deavor in this area, comes with its limitations. Although
we validate the efficacy of image reward models, we antici-

pate that specialized video reward models capturing human
preferences might be even more superior since they evaluate
one generated video as a whole. Additionally, as a common
issue mentioned in previous works [1, 2, 4, 9], reward fine-
tuning carries a risk of over-optimization, meaning that ex-
cessive optimization steps will result in the degradation of
the video quality despite potential increases in the reward
score. Addressing these aspects presents avenues for future
research, including the development of a more advanced
video reward model and the design of strategic mechanisms
to identify and ameliorate over-optimization.

C. More Details about Implementing LoRA

To instantiate LoRA [5] for efficient tuning, we adopt the
implementation used in Diffusers1. Specifically, we config-
ure the intrinsic rank within LoRA to 4 to ensure fast pro-
cessing. LoRA modifications are applied to every Trans-
former [10] layer within our model, targeting the linear
layers responsible for query, key, value, and output pro-
jections. ModelScopeT2V [11] contains 1,347.44M pa-
rameters, whereas the additional parameters introduced by
adding LoRA amount to only 1.58M – approximately 0.1%
of the total ModelScopeT2V parameters.

D. More Details about User Study

In the main paper, we present a user study to demon-
strate the effectiveness of InstructVideo. This study
involves a comparative analysis of videos generated by
InstructVideo and other methods, focusing on two key
aspects: video quality and video-text alignment. For video
quality, we asked annotators to evaluate: 1) The overall vi-
sual quality of the videos, 2) Alignment with general human
aesthetic preferences, such as pleasing visuals, texture and
details, and 3) The smoothness and consistency in terms of
structural and color transitions within the video. Regarding
video-text alignment, annotators are tasked with determin-
ing the extent to which the generated videos accurately and
clearly represent the content of the provided text prompts.
This assessment included evaluating the depiction of enti-
ties, attributes, relationships, and motions as described in
the prompts. To simplify the evaluation process, annotators
are asked to perform pairwise comparisons between videos,
thereby streamlining their task to direct contrasts rather than
isolated assessments.

1https://github.com/huggingface/diffusers/blob/
main/src/diffusers/models/lora.py



Method In-domain New Animals Non-animals
ModelScopeT2V 0.2506 ± 0.0155 0.2502 ± 0.0138 0.2557 ± 0.0177

ModelScopeT2V† 0.2542 ± 0.0122 0.2541 ± 0.0109 0.2610 ± 0.0158

InstructVideo 0.2717 ± 0.0137 0.2645 ± 0.0125 0.2682 ± 0.0202

InstructVideo† 0.2736 ± 0.0125 0.2664 ± 0.0131 0.2739 ± 0.0210

Table A.1. Generation with 50-step DDIM inference after fine-
tuning with 20-step DDIM inference. † denotes the model utilizes
D = 50 while others adopt D = 20. ‘In-domain’ denotes in-
domain animal prompts from the evaluation data.

E. More Visualization Results

We provide more visualization results to exemplify the con-
clusions we draw in the main paper, including: 1) More
results demonstrating how the generated videos evolve as
the fine-tuning process proceeds as shown in Fig. A.2;
2) More results showcasing the comparison between
InstructVideo and the base model ModelScopeT2V
as illustrated in Fig. A.3; 3) More results exemplifying the
comparison between InstructVideo and other reward
fine-tuning methods as shown in Fig. A.4; 4) More results
showing the InstructVideo’s generalization capabili-
ties to unseen text prompts as shown in Fig. A.5.

F. 50-Step Generation with InstructVideo

To showcase the adaptability and effectiveness of
InstructVideo, we conduct experiments using a
50-step DDIM inference for generation after initial fine-
tuning with 20-step DDIM inference. The results are
shown in Tab. A.1. We observe that InstructVideo,
despite being fine-tuned with a 20-step protocol, remains
effective under a longer 50-step DDIM inference protocol,
as demonstrated by the boosted reward scores. We present
several cases to further illustrate InstructVideo’s
efficacy as shown in Fig. A.6. We observe that both
inference schemes can significantly improve over the base
model and adopting more inference steps can occasionally
lead to better results.

G. 50-Step Reward Fine-tuning

To assess the adaptation of InstructVideo to differ-
ent DDIM steps, we experiment on reward fine-tuning with
the commonly-used 50-step DDIM inference and evaluate
its 20-step generation quality for a fair comparison. We
present the results in Fig. A.1. The results demonstrate that
InstructVideo could be optimized towards higher re-
ward scores in both settings. However, utilizing 50 steps de-
grades the fine-tuning efficiency, likely due to the increased
computation brought by longer sampling chains.
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Figure A.1. Reward finetuning with 50-step DDIM inference.

H. Adaptation to Other Reward Functions

In the main paper, we focus on the utilization of
HPSv2 [12]. To further validate the generalization of our
method to other reward functions, we explore the applica-
tion of ImageReward [13] as our reward model. ImageRe-
ward is a general-purpose text-to-image human preference
reward model, fine-tuned on BLIP [6]. We perform reward
fine-tuning as HPSv2 and present results in Fig. A.7. We
observe that the quality of the videos are generally boosted
in terms of structures, color vibrancy and details, despite
that the stylistic aspects of the videos differ from those fine-
tuned with HPSv2.

I. More Ablation Studies on SegVR and TAR

We present more qualitative comparisons in Fig. A.8. The
figures indicate that removing both components leads to
generation degradation. We also present a quantitative com-
parison in Fig. A.9(a). The curve indicates that remov-
ing both components can accelerate fine-tuning at an early
stage, but the generation ability falters around the turning
point (marked by red circle) and cannot be recovered, with
variance increased. This is consistent with the main paper
that overly dense or excessively strong reward signals can
lead to generation collapse.

J. The Extreme Case of TAR

One extreme case of TAR is that only the central frame is
utilized. This can be achieved by setting λtar = +∞, which
ensures the exclusive use of the central frame. We present
the quantitative results (fine-tuning curves) in Fig. A.9(b).
With only the central frame providing supervision, the re-
ward signal is relatively weak, leading to low fine-tuning
efficiency.



Method Reward Score ↑ CLIPSIM ↑ Temporal Consistency ↑
ModelScopeT2V 0.2513 0.2961 0.9395

DDPO 0.2519 0.2976 0.9419
RWR 0.2558 0.3010 0.9692

DRaFT 0.2591 0.3024 0.9624
InstructVideo (20k) 0.2707 0.2998 0.9848
InstructVideo (17k) 0.2675 0.3020 0.9780

Table A.2. Quantitative evaluation with CLIPSIM and Tempo-
ral Consistency .

K. Evaluation with CLIPSIM and Temporal
Consistency

We use the reference-free metric CLIPSIM and
Temporal Consistency from Gen-1 [3] to evaluate
InstructVideo. We evaluate on all in-domain and
unseen prompts from Tab. 1 of the main paper, and present
the results in Tab. A.2. The default setting (20K) achieves
the best on Reward Score and Temporal Consistency. If
we perform less fine-tuning (17k), we could obtain higher
CLIPSIM, indicating that CLIPSIM is not correlated with
the objective of human preferences.
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Figure A.2. More examples showing the evolution of generated videos during fine-tuning.
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Comparison with
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Figure A.3. More examples showing the comparion of InstructVideo with the base model ModelScopeT2V. ModelScopeT2V
utilizes 20 and 50 DDIM steps.
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Figure A.4. More examples showing the comparison of InstructVideo with other reward fine-tuning methods. We set D = 20 for
all methods.
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Figure A.5. More examples showing the comparison of InstructVideo’s generalization capabilities with other methods. We set
D = 20 for all methods.
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inference

Figure A.6. Generation with 50-step DDIM inference after fine-tuning with 20-step DDIM inference.
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grass on nature.

Close up of 
blacknose sheep 
head.

An beetle on the 
branch in close up.

Russian blue cat 
playfully biting 
and scratching 
owners hand.

ImageReward

Figure A.7. Comparison of InstructVideo fine-tuned using ImageReward with the base model ModelScopeT2V. We set D = 20
for two methods.



Ablation on 
SegVR and TAR
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Underwater footage of butterfly fish. Goose is looking for food to eat in nature. Adult beautiful blue eyed cat closeup.

Figure A.8. More ablation studies on SegVR and TAR.
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Figure A.9. (a) The quantitative analysis of the ablation study on SegVR and TAR. (b) The quantitative analysis of the extreme case
of TAR, where only the central frame is used.


