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6. Appendix Summary
The appendix contains the following sections:

(1) Additional Experiments and Analyses (Sec. 7):
– Detailed Results for Energy Reduction (Sec. 7.1)
– Detailed Results for Image Corruption (Sec. 7.2)
– Hyper-parameters Sensitivity (Sec. 7.3)

(2) Detailed Settings (Sec. 8):
– Datasets(Sec. 8.1)
– Evaluation Metrics(Sec. 8.2)
– Hyper-parameters(Sec. 8.3)
– Computing Resources (Sec. 8.4)

(3) Limitations and Future Explorations (Sec. 9).

7. Additional Experiments
7.1. Detailed Results for Energy Reduction
This section serves as an extension of the energy analysis
(Sec. 4.3.1) in the main text, presenting the relationship be-
tween TEA’s energy reduction and the enhancement of gen-
eralizability across all types of corruption. The detailed re-
sults are shown in Figs. 7 and 8, where each corruption type
is analyzed at five levels of severity, with the analysis exam-
ining the correlation between the extent of energy reduction
and performance improvements, both before and after adap-
tation, as severity levels increase.

In our experiments, TEA generally reduced energy and
enhanced generalization across various corruptions. Yet,
for mild corruptions like “Brightness” at level one, i.e., the
mildest in CIFAR-10-C, generalization did not improve and
occasionally deteriorated slightly. Correspondingly, energy
did not decrease and even increased marginally. These out-
comes indicate a strong correlation between generalizability
enhancement and energy reduction. However, it is possi-
ble that our method may not reduce energy as anticipated
for distributions with some less severe corruption types.
This may be attributed to these distributions being closely
aligned with the original, already at a low energy state. The
uniform hyperparameters used in our adaptation may not be
optimal for such cases. Addressing this discrepancy will be
a priority in future research.

7.2. Detailed Results for Image Corruption
This section serves as an extension of the main adaption re-
sults (Sec. 4.2) in the main text, presenting the detailed per-
formance for each corruption type at the most severe cor-
ruption level. The detailed results are shown in Tab. 7. In
our evaluation, TEA consistently achieves the highest accu-
racy for every corruption type on CIFAR-10-C and CIFAR-

100-C datasets. On TinyImageNet, our model exhibits su-
perior performance on the majority of corruptions. How-
ever, it is slightly outperformed by SHOT on a few cor-
ruption types. The performance difference might be be-
cause the corruptions are mild and similar to the source data,
which benefits pseudo-label methods like SHOT that rely on
this similarity to produce accurate labels.

7.3. Hyper-parameters Sensitivity
This section provide a new experiments on hyper-
parameters sensitivity of our proposed TEA. The main
hyper-parameters for TEA are the step and learning rate
for Stochastic Gradient Langevin Dynamics (SGLD). Fig. 9
illustrates the variation in model accuracy as the SGLD
learning rate is incrementally adjusted from 0.001 to 0.4,
while Fig. 10 demonstrates the impact on accuracy when
the SGLD step is increased from 1 to 200. The results reveal
that the performance of TEA is consistently state-of-the-art
under a wide range of hyper-parameters choices, across all
types of corruption on CIFAR-10-C.

8. Detailed Settings
8.1. Datasets
We perform experiments on four datasets across two
tasks. Image corruption task include CIFAR-10(C), CIFAR-
100(C), and TinyImageNet(C) datasets. Domain general-
ization task include PACS datasets.

Dataset of Clean Distribution Clean distribution of
CIFAR-10, CIFAR-100 [29] and TinyImageNet [31] are
datasets of clean distribution. CIFAR-10 and CIFAR-
100 datasets consist of 60,000 color images, each of size
3x32x32 pixels. CIFAR-10 is categorized into 10 distinct
classes with 6000 images per class. CIFAR-100 is more
challenging, as these images are distributed across 100
classes, with 600 images per class. TinyImageNet datasets
consist of 110,000 color images, each of size 3x64x64 pix-
els, which are categorized into 200 distinct classes with 550
images per class. Both CIFAR-10 and CIFAR-100 are sub-
divided into a training set of 50,000 images and a test set of
10,000 images. TinyImageNet is subdivided into a training
set of 100,000 images and a test set of 10,000 images.

Dataset of Corrupted Distributions CIFAR-10-C,
CIFAR-100-C and TinyImageNet-C[17] are variants of
the original CIFAR-10, CIFAR-100 and TinyImageNet
datasets that have been artificially corrupted into 19 types



Table 4. Summary of Clean & Corruption Datasets

Dataset #Train #Test #Corr. #Severity #Class.
CIFAR-10 50,000 10,000 1 1 10
CIFAR-100 50,000 10,000 1 1 100
TinyImageNet 100,000 10,000 1 1 200
CIFAR-10-C - 950,000 15 5 10
CIFAR-100-C - 950,000 15 5 100
TinyImageNet-C - 750,000 15 5 200

Table 5. Summary of PACS Datasets

Domain #Sample #Class Size
Photo 1,670 7 3x227x227
Art 2,048 7 3x227x227
Cartoon 2,344 7 3x227x227
Sketch 3,929 7 3x227x227

of corruptions at five levels of severity, resulting in 95
corrupted versions of the original test set images. The
corruptions include 15 main corruptions: Gaussian noise,
shot noise, impulse noise, defocus blur, glass blur, motion
blur, zoom blur, snow, frost, fog, brightness, contrast,
elastic, pixelation, and JPEG. All these corruptions are
simulations of shifted distributions that models might
encounter in real-world situations.

Datsset of PACS PACS[35] is an image dataset popular
used in transfer learning, which consist of four domains,
namely Photo (1,670 images), Art Painting (2,048 images),
Cartoon (2,344 images) and Sketch (3,929 images). Each
domain contains seven categories.

8.2. Evaluation Metrics
For evaluation on corruption datasets, we employ Average
Accuracy and Mean Corruption Error (mCE) [17] as evalu-
ation metrics. For clean and PACS datasets, we employ Ac-
curacy as evaluation metric. These metrics provide a com-
prehensive evaluation of a model’s generalization in han-
dling diverse distributions, thereby offering a multi-faceted
perspective on model performance.

Average Accuracy Average Acc is the accuracy averaged
over all severity levels and corruptions. Consider there are
a total of C corruptions, each with S severities. For a model
f , let Es,c(f) denote the top-1 error rate on the corruption c
with severity level s averaged over the whole test set,

AverAccf = 1 � 1

C · S

CX

c=1

SX

s=1

Es,c(f). (9)

Mean Corruption Error mCE is a metric used to mea-
sure the performance improvement of model f compared to
a baseline model f0. We use the model without adaptation
as the baseline model,

Table 6. Summary of Hyper-parameters

Data Common TEA-SGLD
Step LR BS Optim Step LR Std

CIFAR-10-C 1 0.001 200 Adam 20 0.1 0.01
CIFAR-100-C 1 0.001 500 Adam 20 0.1 0.01

TinyImageNet-C 1 0.0001 1000 Adam 20 0.1 0.01
PACS-P 10 0.001 full Adam 20 0.1 0.01
PACS-A 10 0.001 full Adam 20 0.1 0.01
PACS-C 10 0.002 full Adam 20 0.1 0.01
PACS-S 20 0.002 full Adam 20 0.1 0.01

mCEf =
1

C

CX

c=1

PS
s=1 Ec,s(f)

PS
s=1 Ec,s (f0)

(10)

8.3. Hyper-parameters
This section outlines the hyper-parameters chosen for our
experiments. These settings enable the reproducibility of
the results presented in our study. For common hyperpa-
rameters, we align with those used in Tent [60]. For TEA-
specific hyper-parameters, we adjust them following the pa-
rameter choices from JEM [13].

8.4. Computing resources
All our experiments are performed on RedHat server (4.8.5-
39) with Intel(R) Xeon(R) Gold 5218 CPU @ 2.30GHz4,
4⇥ NVIDIA Tesla V100 SXM2 (32GB) and 3⇥ NVIDIA
Tesla A800 SXM4 (80GB).

9. Limitation and Future Works
Our study has identified key aspects for improvement and
future research, which are outlined below: (1) The use of
Stochastic Gradient Langevin Dynamics sampling is both
time-consuming and unstable. However, ongoing research
in energy-based models is addressing these issues through
various methods, such as gradient clipping [66], diffusion
process [40], additional gradient term [8] and ordinary dif-
ferential equation based sampling [42]. One of our fu-
ture directions is to enhance TEA by incorporating these
advanced sampling techniques. (2) Overemphasizing the
model’s sensitivity to the data distribution may significantly
impact its discriminative ability. This trade-off between
transferability and discriminability is a common theme in
TTA research [11, 30]. Another direction for our future
work is to explore how to enhance the model’s perception
of data distribution while maintaining or even improving
its discriminative power. We acknowledgethat the limita-
tions identified may present challenges. Nevertheless, we
remain confident that our study represents a pioneering ef-
fort to integrate energy-based training into test time adapta-
tion. We believe that any future advancements in the train-
ing of energy-based models will likely enhance and refine
the outcomes we have demonstrated in our research.



Figure 7. The relationship between TEA’s energy reduction and the enhancement of generalizability on CIFAR-10-C, under different
types of distribution and different severity level of distribution shifts. Each subfigure plots corruption severity level on the x-axis, energy
reduction on the left y-axis, and accuracy on the right y-axis. The accuracy axis contains two bars: the red bar denotes our TEA’ accuracy,
while the transparent bar denotes baseline’s accuracy.

Figure 8. The relationship between TEA’s energy reduction and the enhancement of generalizability on CIFAR-100-C, under different
types of distribution and different severity level of distribution shifts. Each subfigure plots corruption severity level on the x-axis, energy
reduction on the left y-axis, and accuracy on the right y-axis. The accuracy axis contains two bars: the red bar denotes our TEA’ accuracy,
while the transparent bar denotes baseline’s accuracy.
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Figure 9. Hyper-parameter stability with respect to the Stochastic Gradient Langevin Dynamics (SGLD) learning rate. The x-axis is the
SGLD learning rate varying from 0.001 to 0.4, while the y-axis measures model performance in terms of accuracy.

Figure 10. Hyper-parameter stability with respect to the Stochastic Gradient Langevin Dynamics (SGLD) step. The x-axis is the SGLD
step varying from 1 to 200, while the y-axis measures model performance in terms of accuracy.
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