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The Supplementary Material consists of four parts:
• Sec. 1: This section presents the details of dataset construc-

tion, which includes video collection, annotation details,
annotation guidance, and analysis of annotation agree-
ment.

• Sec. 2: This section provides experiment details for the
submitted manuscript, including a thorough explanation
of the experiment settings and visualizations for three
multimodal learning tasks.

• Sec. 3: In this section, additional experiments and re-
sults are provided, covering the performance on normal
and anomalous videos, performance with gender-neutral
annotations, and anomaly detection.

• Sec. 4: This section clarifies the license details and acces-
sibility of our UCA dataset.

1. Dataset Construction Details
1.1. Video Collection

All the videos in our UCA dataset are sourced from UCF-
Crime [11], a real-world surveillance dataset released at
CVPR 2018. The dataset encompasses a wide range of event
categories, including Abuse, Arrest, Arson, Assault, Bur-
glary, Explosion, Fighting, Road Accidents, Robbery, Shoot-
ing, Shoplifting, Stealing, Vandalism, and Normal Videos.

Out of the original 1900 videos, we excluded 46 low-
quality videos, which resulted in a final collection of 1854
videos. The criteria for removing these low-quality videos
included severe occlusion, blurry content, excessively fast
playback speeds, and the presence of duplicate videos. The
presence of such low-quality videos poses challenges in
subsequent annotation tasks, as they are difficult to identify
through manual inspection. The statistics of UCF-Crime
and our UCA in terms of the number of videos in different
categories are shown in Table 1.

Moreover, following the partitioning approach of the orig-
inal UCF-Crime dataset, UCA is categorized into two main
groups: "Abnormal" and "Normal" videos, as shown in Ta-
ble 2. In this context, "Abnormal" videos denote those con-
taining scenes with exceptional occurrences or criminal ac-
tivities present within the original videos.

1.2. Annotations

For videos in UCF-Crime, we provide fine-grained anno-
tations that describe the events occurring within the video.
These annotations are highly beneficial for tasks such as

video understanding, video temporal localization, and video
caption generation. Each annotation also includes the precise
start and end times of the events, accurate up to 0.1 seconds.

To meet the needs of different researchers and en-
hance the convenience of data processing, we have
uploaded two versions of the annotation files in our
dataset project at https://xuange923.github.io/
Surveillance-Video-Understanding, namely
txt and json formats. The original annotation data was
collected in txt format, which is simple and easy to read,
facilitating preliminary data collection and quick reference.
Additionally, considering the needs for research and experi-
mentation, we have converted these txt annotations into json
format for ease of use in subsequent experiments.

Figure 1. Comparison of Two Versions of Annotation Formats

In the txt files, we record several pieces of information for
each annotation, including the corresponding video name,
event start time, event end time, and annotation content.

In the json files, we record the timestamp and description
of each annotation as a list. Additionally, we include the du-
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Table 1. The comparison of UCF-Crime and UCA in the video numbers of different categories.

Video numbers Abuse Arrest Arson Assault Burglary Explosion Fighting Road Accidents

UCF-Crime 50 50 50 50 100 50 50 150
Our UCA 50 50 50 48 100 50 50 148

Video numbers Robbery Shooting Shoplifting Stealing Vandalism
Training_

Normal_Videos
Testing_

Normal_Videos Summary

UCF-Crime 150 50 50 100 50 800 150 1900
Our UCA 149 50 50 100 49 764 146 1854

Figure 2. Detailed Example of the Annotation Format.

Table 2. Abnormal and normal video splits of our UCA dataset.

Statistics Train Val Test

Abnormal Normal Abnormal Normal Abnormal Normal

#Video 576 589 162 217 206 104
Video length(h) 20.94 54.59 5.88 15.29 6.85 18.38

ration information of the original video, which will facilitate
subsequent experimental tasks.

Figure 1 illustrates two versions of the annotation format,
while Figure 2 provides a specific example.

1.3. Annotation Guidelines

Here are the main annotation guidelines we established prior
to commencing the labeling work, aimed at ensuring accu-
racy and consistency throughout the data annotation process:

• Fine-grained annotation principle: we emphasize the gran-
ularity of the data, considering each event with changes
(including changes in human or object states) as an indi-
vidual data point.

• Time precision: time should be accurately recorded up
to 0.1 seconds, allowing for overlaps in the start and end
times of multiple samples.

• Rich sentence descriptions: we encourage the use of rich
sentence descriptions that enhance semantic understand-
ing, employing techniques such as the use of adjectives
to provide detailed coverage of the objects present in the
scene.

• Region of Interest (ROI) descriptions: in cases where
multiple regions in a single frame experience simultane-
ous actions or events, annotators may use terms like "top-
left corner" or "middle" to differentiate and describe the



changes in the states of people or objects within those
specific regions.

• Handling intense changes: For scenes with rapid changes,
annotators should combine short-term and long-term de-
scriptions. Initially, they can describe these changes over
shorter intervals to capture the micro-variations in the
video content. Then, these scattered short-term descrip-
tions should be integrated into a coherent and comprehen-
sive narrative. This layered, multi-granularity annotation
method can not only improve the accuracy of the descrip-
tions but also ensure a complete representation of the event,
playing a crucial role in video anomaly detection and con-
tent analysis.

• Clear action descriptions: If actions in a video are so sub-
tle that they are hard to discern by the human eye, unclear
action descriptions can affect the overall quality of the
annotation. Hence, we recommend ensuring clarity and
accuracy in action descriptions during annotation. For
video segments where actions are not obvious or diffi-
cult to discern, we decide whether to include them in the
dataset based on their importance. In some cases, if these
segments’ actions are of little value to the study or their am-
biguity could lead to misunderstandings, we might choose
to omit these annotations or, in extreme cases, remove
these videos from the dataset. Under this condition, we
encourage annotators to communicate with our reviewer
team.

• Complex environment descriptions: In complex environ-
ments, where there may be a lack of obvious main events
or prominent actions, extracting key information from
videos becomes challenging. Therefore, we encourage
annotators to provide an overall overview to facilitate a
comprehensive understanding of the environment.

In our annotation project, experts initially annotated the
video data, collecting 100 examples. These cases not only
laid the groundwork for our preliminary version of the anno-
tation guidelines but also became a resource for subsequent
annotators to refer to. Throughout the annotation process,
we encourage annotators to communicate with our review
team whenever they encounter uncertainties or questions.
Through this continuous exchange and feedback, we have
constantly refined and fine-tuned these annotation principles.
These meticulously designed principles provide clear guid-
ance to annotators throughout the process, ensuring high
quality and consistency of the annotated data.

1.4. Analysis on Annotation Agreement

Ensuring agreement among different annotators is a criti-
cal aspect of the annotation process. During the dataset
annotation process, we recruited 10 volunteers with com-
puter backgrounds as annotators and formed a review team
consisting of 3 AI researchers. To achieve this, we impose
specific constraints and guidelines to maintain a high level

of consistency throughout the annotation process. These
constraints include:
• Detailed Annotation Guidelines: we provide annotators

with comprehensive guidelines that outline the specific
criteria and principles for annotation.

• Training and Familiarization: before starting the anno-
tation work, annotators undergo training sessions where
they are familiarized with the annotation guidelines and
are given the opportunity to clarify any doubts or concerns.

• Ongoing Communication: throughout the annotation pro-
cess, annotators are encouraged to engage in regular com-
munication with designated reviewers. This allows them
to seek clarification on any ambiguous aspects of the an-
notation task and receive feedback on their work.

• Review and Validation: the work of annotators undergoes
thorough review and validation by designated reviewers.
This process involves cross-checking annotations against
the guidelines and comparing them with the work of other
annotators. During the review process, particular attention
has been given to addressing disagreement in annotation
styles among annotators. Any discrepancies or inconsis-
tencies are identified and addressed through feedback and
clarification.
By implementing these constraints and measures, we aim

to ensure a high level of agreement among annotators, which
enhances the reliability and quality of the annotated dataset.

2. Experiment Details

To ensure consistency, all experiments are conducted using
an RTX3090 GPU with 24GB of memory. The experimental
environment is configured with CUDA 11.4, Python 3.9,
PyTorch 1.12.0, and TensorFlow 2.12.0. However, due to
version compatibility issues in the source code of TDA-
CG, a Tesla T4 GPU with 16GB of memory is utilized for
running this specific experiment. The environment for this
experiment is configured with CUDA 10.1, Python 2.7, and
TensorFlow 1.14.0.

In the following, we will present the experimental setup
specifics for different experimental tasks. Simultaneously, to
compare and demonstrate the efficiency differences among
various methods, we also record the runtime of each model.

2.1. Experimental Details of TSGV

Figure 3. Visualization results of TSGV



In the Temporal Sentence Grounding in Videos (TSGV)
task, we opt to use the C3D network pre-trained on the
Sports1M dataset for extracting visual features. As this net-
work is used for visual feature extraction in all experimental
models across various datasets, we chose the C3D network
for visual feature extraction on the UCA dataset as well, to
facilitate experimentation and enable easy comparison with
results from other datasets.

For CTRL [3], we set the sliding window size to 128 or
240 frames, equivalent to about 5 or 10 seconds of content
in the original video, with an overlap of 0.5. The number of
context clips is set to 1. The text encoder employs the Skip-
thought model, producing text features of 4800 dimensions.
During training, the batch size is set to 32, using the Adam
optimizer.

For SCDM [17], the input video clip length is set to 512
frames, longer videos are truncated, and shorter ones are
padded with zero vectors. The settings for the temporal
convolutional layers are five temporal dimensions {128, 64,
32, 16, 8}. The maximum length for input text is limited to
50, with word embedding sequences obtained through Glove.
During training, the batch size is set to 8, using the Adam
optimizer.

For A2C [4], when setting normalized start and end points,
the maximum frame length Tmax is set to 10. In the observa-
tion network, the output size of the fully connected layer for
encoding description features is set to 1024. The state vector
s(t) at step t is also 1024 dimensions. The text encoder uses
the Skip-thought model. During training, the batch size is
32, using the Adam optimizer.

For LGI [7], the model uniformly samples 128 segments
from each video, with the maximum text length set to 50,
andλ, which controls the extent of overlap between query
attention distributions, is set to 0.2. During training, the
batch size is 64, using the Adam optimizer.

For 2D-TAN [19], the number of sampled clips N in
visual features is set to 16. Non-maximum suppression with
a threshold of 0.5 is applied during inference. The network
structure uses an 8-layer convolutional network with a kernel
size of 5. During training, the batch size is 32, using the
Adam optimizer.

For MMN [16], the number of sampled clips N for visual
features is also set to 16, the dimension of the joint feature
space dH is 256, and the temperature parameter is set to
0.1. During training, the batch size is 8, using the Adam
optimizer.

For MomentDiff [5], the maximum length of visual fea-
tures is set to 1000, the maximum text length to 32, and the
number of random spans Nr to 5. During training, the batch
size is 16, using the Adam optimizer.

In all experiments, the CTRL model exhibits the longest
runtime, requiring about 22 hours per training and testing
epoch. This is mainly due to the original model processing

a large number of clip-sentence pairs. Each training and
testing epoch of the A2C model takes about 50 minutes.
The epochs for 2D-TAN and SCDM take about 1 hour each.
The MomentDiff model requires approximately 20 minutes
per epoch. Among all the models, MMN performs the most
efficiently, completing each training and testing round within
10 minutes.

2.2. Experimental Details of Video Captioning

In the video captioning (VC) task, we utilize the pre-trained
models library built on PyTorch for extracting visual fea-
tures.

For S2VT [12], we uniformly sample 80 frames from
each video, employing pre-trained Inception V4 and VGG16
BN as the visual encoders. During training, the batch size is
set to 32, optimized with the Adam optimizer.

For RecNet [13], the visual encoder also utilizes Inception
V4, sampling 80 frames uniformly from each video. The
maximum sentence length is limited to 50, with excess being
truncated. In training, both local and global parts have a
batch size of 32, using the AMSGrad optimizer.

For MARN [8], we similarly sample 80 frames from each
video, with pre-trained Inception V4 and ResNext101 as
visual encoders, subsequently linearly transformed to 512
dimensions. The maximum sentence length is set to 50. Ini-
tially, 100 epochs of training are conducted on the Attention-
based Recurrent Decoder, followed by the integration of the
Attended Memory Decoder. During training, the batch size
is 32, using the Adam optimizer.

For SGN [9], 50 frames are uniformly sampled from each
video, using pre-trained ResNet 101 and ResNext101 as
visual encoders to extract 2D and 3D features. The maximum
sentence length is set to 30, with word embedding sequences
obtained through GloVe. The model’s similarity thresholdτ
is set to 0.2, and the coefficientλ for Contrastive Attention
loss is 0.16. During training, the batch size is 16, using the
Adamax optimizer.

For SwinBERT [6], in the preparation stage, each video is
segmented into 32 frames, employing an end-to-end training
approach. VidSwin is initialized with pre-trained weights
from Kinetics-600, and the multimodal transformer encoder
is randomly initialized. Due to GPU memory constraints,
the batch size during training is set to 4, using the Adam
optimizer.

For CoCap [10], before training and testing, the video’s
minimum edge size is adjusted to 240, and it is compressed
using H.264 encoding. The visual encoder is initialized with
pre-trained weights from CLIP, while the other encoders and
the multimodal decoder are randomly initialized. During
training, the batch size is 4, using the Adam optimizer.

In all experiments, the SwinBERT model, due to its end-
to-end training mechanism, requires the longest time per
epoch for training and testing, approximately 80 minutes.



The CoCap model significantly improves training efficiency
by using compressed videos, taking about 40 minutes per
epoch. The MARN model, after the integration of the Mem-
ory Decoder in the training phase, requires about 60 minutes
per epoch. The remaining models complete each training
and testing epoch in under 20 minutes.

Figure 4. Visualization results of Successful Video Captioning

Figure 5. Visualization results of Failed Video Captioning

2.3. Experimental Details of Dense Video Caption-
ing

Figure 6. Visualization results of Successful Dense Video Caption-
ing

In this dense video captioning (DVC) task, The C3D fea-
tures used remain consistent with those used in TSGV. The

Figure 7. Visualization results of Failed Dense Video Captioning

I3D features are directly obtained from an external GitHub
repository at https://github.com/tianyu0207/
RTFM, which was established by other researchers.

For TDA-CG [14], each feature sequence corresponds to
64 frames of content in the video. The maximum sentence
length is limited to 30. During training, the Adam optimizer
is used.

For PDVC [15], we set the number of event queries to
100, and conduct experiments using the standard PDVC
model with the LSTMDSA captioner. The LSTM hidden
layer dimension in the caption head is set to 512. The Adam
optimizer is used during training.

For UEDVC [18], the maximum length of video frames
is set to 200, and the maximum sentence length is 50. The
number of layers in the independent encoder is set to 1, while
the cross encoder has 4 layers. This model’s training also
employs the Adam optimizer.

2.4. Experimental Details of MAD

Figure 8. Examples of different video captioning results in MAD.

We will introduce the experimental details of the Multi-
modal Anomaly Detection (MAD) task.
For TEVAD [1], we use the same visual features as the
original model. The video is divided into non-overlapping
segments of 16 frames, and 2048-dimensional visual fea-
tures are obtained through the I3D feature extractor. The
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Figure 9. Comparison of MAD results using different text branches.
The magnitude of curves represents the anomaly score.

hyperparameter λ, used to adjust the weights of the loss
components, is set to 0.0001. During training, the batch size
is 32, using the Adam optimizer.

2.5. Visualization Results

This section presents visualizations of the experimental out-
comes outlined within the paper. Figure 3 showcases in-
stances where the IoU is greater than 0.7 between predicted
and ground truth results in the TSGV task. Figures 4 and 5
respectively depict accurate predictions and erroneous pre-
dictions in the Video Captioning task. Furthermore, Figures
6 and 7 display successful and unsuccessful predictions in
the Video Dense Captioning task. By visualizing and ana-
lyzing these instances of failure, we identify challenges that

existing models may encounter when handling surveillance
videos, including inaccuracies in color recognition, difficulty
in identifying intricate scenes, and struggles in capturing
subtle movements.

Figure 8 shows the visualization results in the MAD task.
From Figure 8, we can find Surveillance SwinBERT can
generate anomaly captions for videos, which is more simi-
lar to ground truth in UCA. However, General SwinBERT
generates normal captions, which are different from ground
truth in UCA. Figure 9 illustrates the impact of different
text branches on anomaly detection result scores in MAD.
The two subplots extract frames 150-240 and 2,700-2,800
from the video in UCF-Crime, with the red region indicat-
ing frames labeled as anomalies in the ground truth. The
two curves represent the results of different text branches
obtained using General SwinBERT and Surveillance Swin-
BERT. Clearly, when using Surveillance SwinBERT to gen-
erate descriptive statements, anomalous video frames ob-
tain higher anomaly scores, thereby improving the accuracy
of anomaly detection. This further demonstrates the effec-
tiveness of introducing the UCA dataset for the anomaly
detection task.

These findings contribute to the exploration of the poten-
tial value of the new UCA dataset in enhancing anomaly
detection model performance.

3. Additional Experiments

3.1. Multimodal Task Performance on Normal and
Anomalous videos

The video data in UCF-Crime can be classified into two
major categories: abnormal videos and normal videos. To
delve into the performance differences between these two
types of videos, we conduct a series of tests using pre-trained
models, evaluating the best-performing methods for each
task.

In the TSGV task, as shown in Table 3, the experimental
results indicate that normal videos significantly underper-
form compared to abnormal videos. This finding aligns
with our expectations. The TSGV task focuses on locating
specific video segments within untrimmed videos. Given
that abnormal videos contain more distinctive segments that
starkly contrast with regular scenes, they are easier to iden-
tify and locate. We also analyzed the differences in video
length between abnormal and normal videos, finding that
normal videos contain more long-duration videos, which is
a primary reason for the difficulty in event localization in
these videos.

In the VC task, the experimental results are presented in
Table 4. This task requires generating textual descriptions
for video segments, where the original length of the video
does not influence the outcome. Abnormal videos often
contain specific descriptive terms like ’explosion,’ ’collision,’



Table 3. Performance of TSGV on UCA Dataset

Method Split IoU=0.3 IoU=0.5 IoU=0.7

R@1 R@5 R@1 R@5 R@1 R@5

MMN [16] Normal 4.02 10.73 2.14 5.63 1.09 3.11
Anomalous 16.15 38.48 8.70 22.15 3.78 10.32

Table 4. Performance of VC on UCA Dataset.

Method Split B1 B2 B3 B4 M R C

CoCap [10] Normal 27.55 17.27 11.04 6.98 11.79 29.41 21.75
Anomalous 29.55 16.46 9.2 4.82 10.57 26.10 18.62

Table 5. Performance of DVC on UCA Dataset.
Method Split Predicted proposals

B1 B2 B3 B4 M C SODA_c

PDVC [15] Normal 8.94 4.97 2.66 1.12 4.21 7.88 1.80
Anomalous 7.56 3.85 1.67 0.50 3.99 9.23 2.69

Method Split Ground-Truth proposals
B1 B2 B3 B4 M C

PDVC [15] Normal 22.16 12.73 7.15 3.61 10.32 17.44
Anomalous 24.33 12.48 5.28 1.97 10.68 25.26

etc., which are less frequent in the vocabulary. Precisely
describing anomalous events in surveillance videos remains
a challenge for existing models, hence normal videos with
more generic descriptions perform better in tests.

In the DVC task, as shown in Table 5, the results suggest
that normal videos outperform abnormal videos in terms
of subtitle generation accuracy. However, since this task
requires complete video features as input, the difference in
video length between normal and abnormal videos imposes
limitations on the models in capturing key video information
and narrating the video story.

3.2. Multimodal Task Performance with Gender-
Neutral Annotations

To minimize the impact of gender on experimental results,
we generated gender-neutral annotations, as detailed in Ta-
ble 6. For three distinct multimodal tasks, we selected one
model for experimentation using gender-neutral annotations.

The experimental results for the TSGV task are pre-
sented in Table 7. It can be observed that, at low preci-
sion (IoU=0.3), gender-neutral annotations show a slight
improvement compared to the regular version. However, as
the task difficulty increases, there is no significant difference
between the results of gender-neutral and regular versions.
This further underscores the challenge of accurately pinpoint-
ing "what a person is doing" on the UCA dataset.

The experimental results for the VC and DVC tasks are
presented in Tables 8 and Tbale 9. Both tasks require gener-
ating captions based on video content. Substituting different
gender-specific terms with neutral terms in the vocabulary
contributes to a more uniform vocabulary, leading to slightly
higher experimental results using gender-neutral annotations
compared to the regular version.

Overall, the impact of using gender-neutral annotations

Table 6. Replacement vocabulary for gender-neutral annotations.

Regular Gender-neutral
woman, man, she, he, him person

herself, himself themself
her, his the person’s

policeman police
salesman salesperson
postman mail carrier
doorman doorperson
fireman firefighter
gunman person with a gun

repairman mechanic
cameraman photographer

Table 7. Performance of TSGV on UCA Dataset with Gender-
Neutral Annotations.

Method IoU=0.3 IoU=0.5 IoU=0.7

R@1 R@5 R@1 R@5 R@1 R@5

MMN [16] 9.03 21.77 4.13 12.42 2.08 5.82

on these multimodal tasks is relatively minor. As mentioned
in the paper, different tasks still face significant challenges
on the surveillance video dataset. We provide gender-neutral
annotations in the repository, and researchers considering
ethical considerations are encouraged to utilize this version
of annotations.

Table 8. Performance of VC on UCA Dataset with Gender-Neutral
Annotations.

Method Features B1 B2 B3 B4 M R C

CoCap [10] CLIP 30.04 18.71 11.58 6.89 12.22 29.48 20.41

Table 9. Performance of DVC on UCA Dataset with Gender-
Neutral Annotations.

Method Features Predicted proposals
B1 B2 B3 B4 M C SODA_c

PDVC [15] I3D 9.08 5.13 2.71 1.04 4.72 10.06 2.50

Method Features Ground-Truth proposals
B1 B2 B3 B4 M C

PDVC [15] I3D 25.18 14.05 7.12 2.84 11.58 23.06

3.3. Anomaly detection

In this section, we conduct additional anomaly detection
experiments, aimed at validating the effectiveness of textual
information in enhancing anomaly detection results. We
choose two models, MGFN [2] and UR-DMU [20], and
perform experiments under the environment of Python 3.9,
CUDA 11.6, and PyTorch 1.13. For comparison convenience,
we adopt the same 2048-dimensional I3D visual features as



Table 10. Comparative Results of Anomaly Detection Accuracy
Using Multimodal and Visual-Only Features. Visual* indicates
results obtained from models retrained with unified visual features.
Multimodal represents using our provided SwinBERT trained on
UCA dataset.

Method Visual* Multimodal AUC

MGFN [2] ✓ ✗ 82.42%
✓ ✓ 83.06%

UR-DMU [20] ✓ ✗ 83.14%
✓ ✓ 84.16%

in TEVAD. Moreover, we generate caption texts using the
SwinBERT model trained on the UCA dataset, then obtain
768-dimensional sentence embeddings through the super-
vised SimCSE pretrained on bert-base-uncased. Finally, we
concatenate the visual and textual features to serve as the
multimodal input features for the models.

For MGFN, we set the random seed to 2023 and retrain
the model with both single visual features and multimodal
features. During training, the batch size is set to 16 and the
learning rate to 0.001. For UR-DMU, the input dimension
of visual features is set to 2048, different from the 1024
dimensions used in the original paper. In training, the batch
size is set to 32 and the learning rate to 0.0001. Other
parameter settings remain the same as in the original paper.

The experimental results are shown in Table 10. It is
evident that using multimodal features effectively enhances
the accuracy of anomaly detection in surveillance videos.
Notably, the results of the experiments with the single visual
feature branch are obtained by retraining the model, differing
from the data provided in the original paper. This part of
the experiments aims to highlight the important role of mul-
timodal information in anomaly detection, and the results
convincingly demonstrate the effectiveness and significance
of our UCA dataset in improving the accuracy of anomaly
detection tasks.

4. License Details and Accessibility

The UCA dataset is released under a Apache License 2.0. In
accordance with the Apache License 2.0, users are free to
use, modify, and distribute this dataset, but must include the
original copyright and license notices. This means that any
derivative works or distributed versions based on this dataset
should retain the original copyright and license information.

Please note that our dataset is intended solely for aca-
demic and research purposes. We encourage the academic
community and researchers to use this dataset to advance the
field. If you have any questions about the use of the dataset,
please contact us directly. We warmly welcome and look
forward to your feedback and usage experiences.

The content of the UCA dataset can be accessed at
the following link: https://anonymous.4open.

science/r/UCA-dataset. We are committed to pro-
viding accessible and user-friendly resources to contribute
to the advancement of the field of multimodal surveillance
video datasets. We sincerely hope this dataset becomes a
valuable resource in your research endeavors.
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