
Appendix

Table of Contents
A. Method details 1

A.1. Network structures 1
A.2. Decoder computation 1
A.3. Semantic augmentation 1
A.4. Homography smoothness loss 3
A.5. Mask feature and correlation 4
A.6. Additional explanation on Fig. 4f in

the paper 4

B. Result details 4
B.1. Benchmark test screenshots 4
B.2. More qualitative examples 4
B.3. Experiment timing 4

A. Method details
A.1. Network structures

Why ARFlow as backbone? We choose ARFlow [5] as
our backbone in light of the following considerations.
• Our main goal is to investigate how SAM [4] can help

with unsupervised optical flow instead of pushing the best
possible performances by all means. Therefore, adopting
a simple yet effective model, such as ARFlow, works bet-
ter for our research.

• ARFlow is especially light-weight and easy to train. Pre-
vious related work, SemARFlow [12] also adopts the
ARFlow backbone, so we follow them to borrow similar
ideas from SemARFlow as well.

• Previous research has shown that ARFlow can be eas-
ily adapted to have close to UPFlow performances while
maintaining simplicity [11, 12]. We follow those sugges-
tions and build our own baseline model, evaluated in the
experiments section.

Why is there no comparisons with SMURF? Admit-
tedly, SMURF [9] has achieved outstanding performances
on unsupervised optical flow estimation. However, we do
not compare with them in the experiments section for the
following reasons.
• As mentioned above, our goal is to see how SAM [4] can

help with unsupervised optical flow instead of pushing the
best possible performances by all means. We compare
our models with the baseline model that does not apply
SAM to show how SAM is effective, while other previous
methods are shown as references to help understand in
absolute terms how our adapted version performs.

• SMURF uses a larger architecture RAFT [10], and ar-
guably, its success highly relies on its technical designs
such as full-image warping, multi-frame self-supervision
(which requires training a tiny model for each training
sample separately), as well as its extensive data augmen-
tations. We could definitely keep these technical designs
in our model as well to enhance performances. How-
ever, they add great complexities to our network and may
greatly increase the computational costs of our experi-
ments. Therefore, we choose to stay simple and focus
more on how to inject SAM information effectively.

Detailed structures Our detailed network structures are
shown in Figs. 1 and 2.

A.2. Decoder computation

As shown in Fig. 2b in the main paper. For each iteration
on level l, the decoder takes in image features f (l)

1 , f (l)
2 and

the flow estimate from the previous level F̂ (l+1)
1→2 (and also

masks M1, M2 if the mask feature module is turned on), and
outputs the refined flow estimate at the current level F̂ (l)

1→2.
A 1-by-1 convolution layer is first applied to f

(l)
1 to unify

the feature channel sizes of different levels to be the same
number 32. This module enables us to reuse the same fol-
lowing modules on all levels. We first upsample F̂

(l+1)
1→2 by

2 times to the same resolution F̃
(l)
1→2 as the features at this

level through a simple bilinear interpolation. The upsam-
pled flow is then used to warp f

(l)
2 as

f̂
(l)
1 (p) = f

(l)
2 (p+ F̃

(l)
1→2), ∀p (1)

which can be implemented through a grid sampling process.
We then compute the correlation between f

(l)
1 and f̂

(l)
1

through a 9× 9 neighborhood window, yielding a flattened
81-channel correlation output. The correlation is then con-
catenated with the upsampled flow F̃

(l)
1→2 and the 1-by-1

convolutional features as the input to the flow estimator net-
work. Note that if the mask feature module is turned on, we
also do warping and correlation to the mask feature g

(l)
t in

the same way.
The flow estimator estimates a flow residual added to

the current estimate F̃
(l)
1→2. Subsequently, a context net is

also applied similarly to obtain the refined flow of this level
F̂

(l)
1→2. The learned upsampler, adapted from the one in

RAFT [10], outputs the parameters for the convex upsam-
pling of F̂ (l)

1→2, yielding the upsampled final output F (l)
1→2.

A.3. Semantic augmentation

Heuristic Our heuristic for choosing key objects is that
a key object may have many object parts that could be also
detected by SAM, so the key object masks may overlap with
many other object masks.

image
(B, 3, H, W)

feat_1
(B, 16, H/2, W/2)

feat_2
(B, 32, H/4, W/4)

feat_3
(B, 64, H/8, W/8)

0.5k

Encoder (1022.2k in total)
conv 3x3

(B,32, H/4, W/4) (B, 64, H/8, W/8) (B, 96, H/16, W/16) (B, 128, H/32, W/32) (B, 192, H/64, W/64)

feat_4
(B, 96, H/16, W/16)

feat_5
(B, 128, H/32, W/32)

feat_6
(B, 192, H/64, W/64)

2.3k 4.6k 9.2k 18.5k 36.9k 55.4k 83.0k 110.7k 147.6k 221.4k 332.0k

Figure 1. Detailed encoder structure (figure adapted from [11]); numbers in purple refer to the parameter sizes of each module.

flow0

up x2

warp

out_corr_relu

f1_1by1[l]

corr

6.2k
4.1k
3.1k
2.1k
1.1k

a1 a2

a3

a4

a5

flow_res

132.6k 147.6k 129.1k 1.7k

221.3k 46.1k

Flow Estimator
(678.4k)

flow1

b1

39.3k

b2

147.6k

b3

147.6k

b4

110.7k

b5

55.4k

b6

18.5k

flow_refine

0.6k

Context Net
(519.6k)

c5 up_mask

110.7k 166.0k

Learned upsampler
(276.7k)

convex
up x4

Iterative decoder (1491.3k in total)
conv 3x3

Figure 2. Detailed decoder structure (figure adapted from [11]); numbers in purple refer to the parameter sizes. The mask feature modules
are not shown in the figure for conciseness. We use the same warping and correlation computation for mask feature and image features.

One example is shown in Fig. 3. Not only has the whole
car object been detected by SAM, but also its components
such as front and rear wheels, car doors and windows,
lights, bumpers, and even the gas cap. As a result, the mask
of the whole car object overlaps with all those component
masks, whereas each component mask only overlaps with
the car mask. Thus, the car object will be selected due to
its high degree of mask overlap. Empirically, our heuristic
works on all car objects pretty well, which are indeed key
objects in autonomous driving.

Figure 3. Example of the SAM masks computed for a car patch

Key object selection We discuss more details on the pro-
cess that we select key objects from the SAM masks. Sup-
pose for the input image I , a number of n masks are de-
tected by SAM, constituting masks M ∈ {0, 1}n×H×W .
Denote M(k) ∈ {0, 1}H×W as the k-th mask, and
M(k, i, j) = 1 means the pixel (i, j) is on the k-th object.
For each mask M(k), we examine the following.
• We first filter masks at a certain dimension. Suppose the

bounding box of M(k) has dimension h×w, we only ac-
cept masks with 50 ≤ h ≤ 200, 50 ≤ w ≤ 400. We avoid
too large masks because they may not fit in the new sam-
ple well in our augmentation. We avoid too small masks
as they make little difference in the augmentation.

• We drop the mask if the area of the mask is smaller than
50% of its bounding box area, i.e.

∑
i,j M(k, i, j) <

50% · hw. This rule is used to exclude those severely
occluded objects.

• We accept the mask if it overlaps with at least 5 other

masks. The number of overlaps can be counted efficiently
though matrix computation of M .

Training steps During key object selection, we save the
selected masks for each training sample on the disk before
starting to train, so this step adds little time or memory con-
sumption during training. For each training sample, we
load three key objects from the object cache for augmen-
tation. For more details about semantic augmentation, we
refer readers to the original paper of SemARFlow [12] and
ARFlow [5].

A.4. Homography smoothness loss

Selecting object regions of interest Before selecting ob-
ject regions, we first transform our raw SAM masks Mt to
its full segmentation representation as described in Sec. 3.5
in the main paper. This makes sure that we do not refine the
same pixel multiple times. Also, the segmentation is usu-
ally smaller pieces of objects, where homography is more
likely to work well.

We estimate the occlusion region using forward-
backward consistency check [6], as we did when comput-
ing photometric loss. The estimated occlusion region is a
good cue of where the current flow estimate is less reliable.
Then, we count the number of occlusion pixels for each seg-
mentation in the full segmentation representation and pick
the top six as candidates. Empirically, we find that six seg-
mentation regions can generally cover most of the occluded
pixels. Although including more candidates can improve
performance, the improvement comes at a larger computa-
tional cost.

Refining each selected regions For each of the candidate
regions selected above, we first find all the correspondences
in that region from flow. We define the reliable flow as those
non-occluded parts estimated above. We only proceed if
the reliable flow part accounts for at least 20% of the whole
region.

Using the reliable flow correspondences, we estimate ho-
mography using RANSAC [2] and compute the inlier per-
cantage of this computation based on reprojection error. We
only accept the homography if inlier percentage is at least
50%.

Consequently, using the accepted homography, we refine
the correspondences of every pixel in the object region and
generate refined flow.

Examples Some examples of the refined flow using ho-
mography are shown in Figs. 4 to 6.

Alleviating limitations of homography Admittedly, ho-
mography is not precise for all objects. It mostly works

Figure 4. An example for homography refinement (Sintel)

Figure 5. Another example for homography refinement (Sintel)

well on planar, rigid regions where no deformation occurs.
In our method, we alleviate his issue through the following
rules.
• We use full segmentation regions mentioned above,

which generally refer to small object parts instead of the
large object. Although the whole object may has very
complex motions, its small parts are more likely to follow
homography constraints.

• We introduce many rigorous accept/reject criteria men-
tioned above. If there is any sign that the homography

Figure 6. An example for homography refinement (KITTI)

relationship does not hold for the specific region, we stop
using it. Only the most reliable homogrphies are used in
refinement.

• We apply homography in the smoothness loss definition
instead of direct post-processing. This allows our net-
work to leverage between homography and other motion
cues such as photometric constraints. Thus, a poor ho-
mography (if any) may not have large impacts if other
signs/losses do not agree.
In addition, to better resolve this issue, it may be better if

we could also obtain the semantic class of each object mask
or if we could use text prompt to find masks, which may be
updated in the later SAM versions.

A.5. Mask feature and correlation

Below are certain points that we need to take care when
designing the mask feature module.
• The raw SAM masks are discrete and arbitrary (see Sec.

3.1 for explanations). The number of masks in each sam-
ple is not fixed. The masks can have different shapes and
sizes. The masks can overlap or leave holes (parts that do
not belong to any masks) in the frame. Therefore, we first
standardize the mask representation using a full segmen-
tation representation described in Sec. 3.5.

• Our mask feature module should be independent of the
order of masks, i.e. our mask feature should be invariant
against any permutation of masks. The mask/object IDs
in the masks can be permuted without changing the seg-
mentation map. Therefore, in our proposed module, we
extract features for each mask separately regardless of its
order.

• When we extract mask feature for each mask, the shape
and size may vary, so our designed module should be
well-defined for inputs of any size. This is why tradi-
tional convolutional layers may not work directly. In-
spired by PointNet [8], for which the input size can also

vary, we adopt operators like averaging or min/max to ag-
gregate features of variable sizes. We apply max pooling
in favor of average pooling because it adds non-linearity
to the network and is often used in image classification
networks. Apart from that, we need a new feature space
where the max operation works. That is why we add the
1-by-1 convolutional layer at the front.

• The pooled feature is the same for every pixel in the same
mask. This may cause numerical issues in optmization.
Therefore, we concatenate and add another 1-by-1 con-
volutional layer to make sure the output mask feature is
not exactly the same everywhere in the same mask.

A.6. Additional explanation on Fig. 4f in the paper

Why is there no curve for our proposed smoothness loss
as a comparison? The way how our homography loss
works is different. For traditional loss, since its gradients
only concentrate around the flow boundary (Fig. 4d), the
gradients push boundaries towards the optimal solution step
by step, so we draw this landscape in Fig. 4f as if the flow
boundary is moving. However, for our homography loss,
the gradients apply on the whole region directly and in-
stantly (Fig. 4e), so they are not just pushing the boundaries.
Therefore, the same analysis in Fig. 4f may not apply.

B. Result details
B.1. Benchmark test screenshots

In Figs. 7 and 8, we show the benchmark test screenshots
of our final model on KITTI and Sintel with more detailed
evaluation metrics.

(a) KITTI-2015 [7] results (b) KITTI-2012 [3] test results

Figure 7. Detailed test results of our final model on KITTI

B.2. More qualitative examples

We show more qualitative examples from the test set of
KITTI-2015 (Fig. 9) and Sintel (Fig. 10).

B.3. Experiment timing

Inference As shown in Sec 4.7 in the main paper, our
model inference is very efficient.

Training Training is fast because we only turn on seman-
tic augmentation and homography smoothness loss after

Figure 8. Detailed test results of our final model on Sintel [1]

Figure 9. More qualitative results on KITTI-2015 test set [7]

150k iterations (200k in total), similar to what have been
done in SemARFlow [12]. The reasons are as follows.
• Both semantic augmentation and homography smooth-

ness loss rely on the current flow estimate to generate self-
supervised loss signals, so we need to use flow at a later
checkpoint to make sure they are reliable. Otherwise, the
loss signals could be misleading.

• Semantic augmentation can generate very challenging
self-supervised samples, which is better to be used at a
later stage.
For the mask feature module adaptation, the added net-

work size is very small (111.9k) since most of the added
modules are 1-by-1 convolutions. Our typical full experi-
ment training time is around 64 hours on 8 V100 GPUs.

We would like to emphasize that our goal is to investi-

gate how SAM-style segmentations can benefit optical flow
estimation. Optimizing SAM efficiency is outside the scope
of this paper.

Figure 10. More qualitative results on Sintel test set [1]

References
[1] Daniel J. Butler, Jonas Wulff, Garrett B. Stanley, and

Michael J. Black. A naturalistic open source movie for op-
tical flow evaluation. In ECCV, pages 611–625. Springer-
Verlag, 2012. 5, 6

[2] Martin A Fischler and Robert C Bolles. Random sample
consensus: a paradigm for model fitting with applications to
image analysis and automated cartography. Communications
of the ACM, 24(6):381–395, 1981. 3

[3] Andreas Geiger, Philip Lenz, Christoph Stiller, and Raquel
Urtasun. Vision meets robotics: The kitti dataset. Inter-
national Journal of Robotics Research, 32(11):1231–1237,
2013. 4

[4] Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao,

Chloe Rolland, Laura Gustafson, Tete Xiao, Spencer White-
head, Alexander C. Berg, Wan-Yen Lo, Piotr Dollar, and
Ross Girshick. Segment anything. In ICCV, pages 4015–
4026, 2023. 1

[5] Liang Liu, Jiangning Zhang, Ruifei He, Yong Liu, Yabiao
Wang, Ying Tai, Donghao Luo, Chengjie Wang, Jilin Li, and
Feiyue Huang. Learning by analogy: Reliable supervision
from transformations for unsupervised optical flow estima-
tion. In CVPR, pages 6489–6498, 2020. 1, 3

[6] Simon Meister, Junhwa Hur, and Stefan Roth. Unflow: Un-
supervised learning of optical flow with a bidirectional cen-
sus loss. In AAAI, 2018. 3

[7] Moritz Menze and Andreas Geiger. Object scene flow for
autonomous vehicles. In CVPR, 2015. 4, 5

[8] Charles R Qi, Hao Su, Kaichun Mo, and Leonidas J Guibas.

Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, pages 652–660, 2017. 4

[9] Austin Stone, Daniel Maurer, Alper Ayvaci, Anelia An-
gelova, and Rico Jonschkowski. Smurf: Self-teaching multi-
frame unsupervised raft with full-image warping. In CVPR,
pages 3887–3896, 2021. 1

[10] Zachary Teed and Jia Deng. Raft: Recurrent all-pairs field
transforms for optical flow. In ECCV, pages 402–419.
Springer, 2020. 1

[11] Shuai Yuan and Carlo Tomasi. Ufd-prime: Unsuper-
vised joint learning of optical flow and stereo depth
through pixel-level rigid motion estimation. arXiv preprint
arXiv:2310.04712, 2023. 1, 2

[12] Shuai Yuan, Shuzhi Yu, Hannah Kim, and Carlo Tomasi. Se-
marflow: Injecting semantics into unsupervised optical flow
estimation for autonomous driving. In ICCV, pages 9566–
9577, 2023. 1, 3, 5

	Appendix
	 Appendix
	. Method details
	. Network structures
	. Decoder computation
	. Semantic augmentation
	. Homography smoothness loss
	. Mask feature and correlation
	. Additional explanation on Fig. 4f in the paper

	. Result details
	. Benchmark test screenshots
	. More qualitative examples
	. Experiment timing

