
Visual Programming for Zero-shot Open-Vocabulary 3D Visual Grounding

Supplementary Material

Contents

The following two items are included in the supplementary

material:

• Visualization examples for zero-shot 3DVG in Section 1.

• Prompts for generating 3D visual program in Section 2.

Answer: Based on the description, we are looking for a storage
shelf that is white in color and is above a desk with a chair in front
of it.
Looking at the room information, we can see that there are several
objects identified as shelves, chairs, and desks. However, the
description also mentions that the shelf is above a desk, which
means we need to look at the coordinates to determine the vertical
positioning of these objects.

The objects identified as shelves are: <obj 24>, <obj 75>, and
<obj 76>. The objects identified as chairs are: <obj 1>, <obj 36>,
<obj 77>. The objects identified as desks are not explicitly
mentioned, but we can consider objects like tables or nightstands
as potential desks: <obj 18>, <obj 58>.

Now, we need to find a combination of these objects where the
shelf is above a desk and there is a chair in front of it. This
requires the shelf to have a higher z-coordinate (vertical position)
than the desk, and the chair to have similar x and y coordinates
(horizontal position) as the desk.
After analyzing the coordinates, none of the objects seem to fit the
description perfectly. However, the closest match could be <obj
24> (shelf), <obj 36> (chair), and <obj 18> (table as desk).
Please note that this is an approximation as the description does
not perfectly match any set of objects in the room.
Answer: <obj 24>

Query: This is a storage shelf. It is white in color and is above a
desk with a chair in front of it.

Figure 1. Visualization example (a) for zero-shot 3DVG.

1. Visualization Examples for Zero-shot 3DVG

We provide three examples to visualize the effectiveness of

the proposed two zero-shot 3DVG approaches, i.e., dialog

with LLM and visual programming. Concretely, the first

Answer: First, let's identify the desk with monitors. There are several
desks and monitors in the room, but the desks with monitors on them
are <obj 18>, <obj 24>, and <obj 40>.
Next, we need to find a window that is behind one of these desks.
The only window in the room is <obj 11>.
Looking at the coordinates, the window <obj 11> has a coordinate of
(0.1, -2.8, 1.3). The desk that is in front of this window (meaning it
has a smaller y-coordinate) is <obj 24> with a coordinate of (0.1, -1.5,
0.4).
So, the desk with monitors in front of the window is <obj 24>.
Answer: <obj 24>

Query: There is a rectangular window. It is behind a desk with
monitors .

Program:
BOX0=LOC(object=‘rectangular window’)
BOX1=LOC(object=‘desk with monitors’)
TARGET=BEHIND(targets=BOX0, anchors=BOX1)

Figure 2. Visualization example (b) for zero-shot 3DVG.

Query: The horizontal blinds. The blinds are above the monitor on the
right .

Program:
BOX0=LOC(object=‘horizontal blinds’)
BOX1=LOC(object=‘monitor’)
BOX2=HIGHER(targets=BOX0, anchors=BOX1)
TARGET=RIGHT(targets=BOX2)

Figure 3. Visualization example (c) for zero-shot 3DVG.

example, i.e., Figure 1, confirms that LLMs can effectively

perform zero-shot 3DVG while also delivering commend-

able results. The second example, as illustrated in Figure 2,

shows that LLMs may encounter limitations in the tasks re-

quiring spatial reasoning. However, this issue can be effec-

Your task is to parse the description to program, thus the program can be executed to
find the target object.

Here are the functions and variables you can use to parse the description to program:

Function Definitions
def LOC(object):

Implement the LOC function to locate the object in the room
Return the objects of query text

def LEFT(targets, anchors):
Implement the LEFT function to find the target object to the left of the anchor
object
Return the target object to the left of the anchor object

...

variable CENTER # Implement the CENTER variable to represent the center of the room

Here are some examples of the description and the corresponding program:

[0] Description: the handicapped stall
[1] Description: the blue bag in the closet
[2] Description: end table with flowers on it
...

[0] Program:
BOX0=LOC(object='handicapped stall')

[1] Program:
BOX0=LOC(object='blue bag')
BOX1=LOC(object='closet')
TARGET=CLOSEST(targets=BOX0, anchors=BOX1)

[2] Program:
BOX0=LOC(object='end table')
BOX1=LOC(object='flowers')
TARGET=CLOSEST(targets=BOX0, anchors=BOX1)
...

Here are some tips:
Use the provided functions to implement the logic for each description
DO NOT create new functions, variables, or constants, or modify the provided functions,
variables, or constants, find the nearest function if not exact match
Replace `Description` with the actual description you want to parse and generate the
target object for
Adjust the program according to the specific requirements of each description
Wall should not be considered as an object

Figure 4. Prompt for generating visual programs.

tively addressed by the visual programming approach. The

third example, i.e., Figure 3, further exemplifies that the vi-

sual programming approach is capable of executing multi-

step reasoning, which involves initially identifying blinds

that are positioned above the monitors, followed by select-

ing the desired one among them.

2. Prompts for Generating 3D Visual Program

As illustrated in Figure 4, the prompts for generating 3D

visual programs include four components as follows:

• Task explanation: We first describe the 3DVG task in nat-

ural language and provide it to the LLMs.

• Function and variable definition: We define a set of func-

tions and variables corresponding to the modules in the

visual programming approach, such as LOC and LEFT.

• In-context examples: We provide contextual examples il-

lustrating how visual programs are structured and applied

to guide LLMs.

• Best practices and tips: We conclude with essential tips

and best practices to ensure the effectiveness of the pro-

grams, highlighting the key aspects that guarantee opti-

mal performance.

These four components collaboratively facilitate the

LLM to understand the task requirement, thereby allowing

it to construct effective visual programs for the 3DVG task.

