
Few-shot Learner Parameterization by Diffusion Time-steps

Appendix
Abbreviation/Symbol Meaning

Abbreviations
FSL Few-Shot Learning
DM Diffusion Model
SD Stable Diffusion
LoRA Low-Rank Adaptation

Symbols in Theory
c, C Class attribute, the set of all class attributes
e, E Environmental attribute, the set of all environmental attributes
Φ Generator mapping from C × E to the image space
erf(z) 2√

π

∫ z

0 e−t
2

dt

τ An attribute loss degree threshold
Err(·) Attribute loss degree
t(c), t(e) Time-step when c or e is lost with at least degree τ

Symbols in Approach
K-way-N -shot FSL task on K classes with N training images in each one
x Image
xt Image with injected noise at time-step t

c Class c
y, yc A textual prompt, prompt describing class c
β1, . . . , βT Variance schedule
αt, ᾱt 1− βt,

∏t
s=1 αs

q(xt|x0) Noisy sample distribution (from DM forward process)
T Total time-steps
d(·) DM denoising network
d(·; θc) DM denoising network injected by LoRA specific to class c
[V] A rare token identifier
Lt DM reconstruction loss at time-step t

wt Standard, pre-defined weight for reconstruction loss at t
rt Ratio of class attribute loss degree over that of all attribute losses
δ∗ Average pixel-level changes when only altering class attribute
γt Weight term from Eq. (5) used to compute rt

Table A1. List of abbreviations and symbols.

This appendix is organized as follows:
• Section A1 derives the closed-form of Eq. (5) and provides the full proof to our Theorem.
• Section A2 provides additional implementation details, including a detailed DM formulation, TiF learner training and

inference algorithm as well as details of the attention map in Figure 2 and our text prompts.
• Section A3 shows additional results, including FSL accuracy on additional tasks, ablation on Stable Diffusion (SD) version

and LoRA insertion location. We also discuss show results of learning a single LoRA for all classes, instead of learning
class-specific LoRAs.
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Figure A1. The PDFs of q(xt|x0) (green) and q(x′
t|x′

0) (blue). Without
loss of generality, we consider the 1-D case of x′

0 > x0. Their means are
computed from Eq. (3).

A1. Proof of Theory
Theorem. 1) For each c ∈ C, there exists a small-
est time-step t(c), such that c is lost with at least degree
τ at each t ∈ {t(c), . . . , T}. This also holds for each
e ∈ E . 2) ∃{βi}Ti=1 such that t(e) > t(c) whenever
∥Φ(c′, e) − Φ(c′, e′)∥ is first-order stochastic dominant
over ∥Φ(c, e′)− Φ(c′, e′)∥ with c′ ∼ C, e′ ∼ E uniformly.

Proof. We start by showing Err(x0,x
′
0, t) =

1
2OVL (q(xt|x0), q(x

′
t|x′

0)). Without loss of generality, we
show a 1-D sample space X in Figure A1. The minimum
Errθ is obtained when given each noisy sample x, DM re-
constructs towards x0 if q(x|x0) > q(x|x′

0) and vice versa
for x′

0, e.g., reconstructing ⋆ as x′
0. However, this maximum

likelihood estimation fails when a noisy sample is drawn
from q(xt|x0) (green PDF), but with a value larger than the
intersection point of the two PDFs (♦), and similar argu-
ments go for q(x′

t|x′
0) (blue PDF). The error rate caused by

the two failure cases corresponds to the green shaded area
and blue one, respectively, leading to an average Errθ of 1

2
of the OVL.

To compute the OVL, it is trivial in the 1-D case by
leveraging the Cumulative Distribution Function (CDF) of
Gaussian distribution. Given that the two distributions have
equal variance from Eq. (3), the intersection point is given
by

√
ᾱtx0+

√
ᾱtx

′
0

2 . For a Gaussian distributionN (µ, σ2), its

CDF is given by 1
2

[
1 + erf(x−µ√

2σ
)
]
. Combining two results,

one can easily show that the blue shaded area, correspond-
ing to half of the OVL, or Err(x0, y0, t), is given by:

Err(x0, y0, t) =
1

2
OVL (q(xt|x0), q(yt|y0))

=
1

2

[
1− erf

(√
ᾱt(y0 − x0)

2
√
2(1− ᾱt)

)]
.

(A1)

To generalize the results to multi-variate Gaussian distribu-
tions, we use the results in [5], which shows that by project-

ing the data to Fisher’s linear discriminant axis, the OVL
defined on the discriminant densities is equal to that defined
on the multivariate densities. Specifically, the mean of the
discriminant densities are given by

µ0 =
√
ᾱt(x

′
0−x0)

⊤Σ−1x0, µ1 =
√
ᾱt(x

′
0−x0)

⊤Σ−1x′
0,

(A2)
where Σ = βtI. The common variance of the discriminant
densities is given by

√
ᾱt(x

′
0 − x0)

⊤Σ−1(x′
0 − x0). Fol-

lowing the calculation steps to compute OVL for the 1-D
case, one can show that for both 1-D and multi-variate case,
we have

Err(x0,x
′
0, t) =

1

2
OVL (q(xt|x0), q(x

′
t|x′

0))

=
1

2

[
1− erf

(
∥
√
ᾱt(x

′
0 − x0)∥

2
√

2(1− ᾱt)

)]
.

(A3)

As ᾱt decreases with an increasing t from Eq. (3),
and the error function erf(·) is strictly increasing,
Err(x0,x

′
0, t) is strictly increasing in t given any

x0,x
′
0. Hence E(c′,e)∈C×E [Err (Φ(c, e),Φ(c

′, e), t)] >

E(c′,e)∈C×E [Err (Φ(c, e),Φ(c
′, e), t(c))] for every t ≥

t(c), which completes the proof of the first part of the The-
orem.

To prove the second part of the Theorem, let F1 and
F2 denote the cumulative distribution function of δe =
∥Φ(c′, e)−Φ(c′, e′)∥ and δc = ∥Φ(c, e′)−Φ(c′, e′)∥, re-
spectively (under uniform sampling of c′, e′), and let f1, f2
be the probability density function of F1, F2, respectively.
Then we have:

E
(c′,e′)∈C×E

erf(γtδe)− E
(c′,e′)∈C×E

erf(γtδc) (A4)

=

∫ ∞

0

erf(γtδ)f1(δ)dδ −
∫ ∞

0

erf(γtδ)f2(δ)dδ (A5)

=

∫ ∞

0

γterf
′(γtδ) [F2(δ)− F1(δ)] dδ > 0, (A6)

In Eq. (A4), γt =
√
ᾱt/
√

8(1− ᾱt) is the constant in Eq.
(A1). Eq. (A5) is from the definition of expectation and the
uniform sampling of c′, e′ in (Y ). Eq. (A6) is derived from
integrating by parts. Eq. (A6) is positive as I) γt is positive
by definition for all t; II) erf(·) is strictly increasing, hence
the derivative erf ′(·) > 0; III) By definition of first-order
stochastic domination, F2(δ) − F1(δ) ≥ 0 for all δ and
F2(δ)−F1(δ) > 0 for some δ. As Eq. (A4) is larger than 0,
we can arrive at E(c′,e′)∈C×E [Err (Φ(c

′, e),Φ(c′, e′), t)]<

E(c′,e′)∈C×E [Err (Φ(c, e
′),Φ(c′, e′), t)] by definition of

Err(·) in Eq. (A1).
Next, we show that ∃T, {βi}Ti=1 such that the

aforementioned inequality implies t(e) > t(c).
The variance schedule should satisfy: ∃t such that
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E(c′,e′)∈C×E [Err (Φ(c
′, e),Φ(c′, e′), t)] < τ ≤

E(c′,e′)∈C×E [Err (Φ(c, e
′),Φ(c′, e′), t)] (i.e., e not

lost while c lost). This rules out the corner case where
t(e) = t(c), e.g., by setting β1 ≈ 1, x1 is already closed to
pure noise and loses all attributes immediately. Note that
this is unlikely in practice as noise is gradually added.

A2. Implementation Details
A2.1. DM Formulation

Reverse Process. DM training corresponds to a learned
Gaussian transition pθ(xt−1|xt) parameterized by θ, start-
ing at p(xT ) := N (xT ;0, I). Each pθ(xt−1|xt) is com-
puted in two steps: 1) Reconstruct x0 from xt with
uθ(xt, t), where uθ is a learnable U-Net [8]. 2) Compute
q (xt−1|xt, uθ(xt, t)), which has a closed-form solution. It
is given by N (xt−1|µ̃t(xt,x0), β̃tI), where

µ̃t(xt,x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt, (A7)

where β̃t =
1−ᾱt−1

1−ᾱt
βt.

Equivalent Formulation. The simplified objective in
DDPM [2] is given by:

LDM = E
t,x0,ϵ
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, y, t)∥2, (A8)

where ϵθ is a θ-parameterized U-Net [8] to predict the added
noise. From Eq. (3), we have

ϵ =
xt −

√
ᾱtx0√

1− ᾱt
, ϵθ(xt, y, t) =

xt −
√
ᾱtd(xt, y, t)√
1− ᾱt

,

(A9)
Taking Eq. A9 into Eq. A8 yields Eq. (4) with the corre-
sponding wt = ᾱt/(1− ᾱt).

A2.2. TiF Algorithm

Our training is summarized in Algorithm 1. In particular,
we train class-specific LoRA matrices and use a fixed text
prompt y. We tried training one set of LoRA matrices for
all classes with class-specific prompts yc. We include the
results in Section A3, where it performs poorly. Note that
our current approach also enjoys the added benefit of nat-
urally supporting class-incremental learning, as the models
for existing classes do not need to be retrained when adding
new classes.

We follow the evaluation pipeline in Diffusion Classi-
fier [4], which enables us to fairly compare with their re-
sults. Specifically, instead of sampling t, ϵ for each class
to compute Eq. (4), the pipeline divides the evaluation
to several stages, where each stage progressively removes
unlikely classes from all classes {1, . . . ,K}, until a sin-
gle class is left as prediction after the last stage. Specif-
ically, one need to specify a sequence S denoting the

Algorithm 1: TiF Learner Training
Input : Few-shot training set D, pre-trained stable

diffusion d, fixed prompt y.
for i = 1, . . . ,K do

Select images in class i as Di = {x|c = i};
Randomly initialize θi;
while not converged do

Sample x0 ∼ Di;
Sample t ∈ {1, . . . , T}, ϵ ∼ N (0, I);
x̂0 ← d(

√
ᾱtx0 +

√
1− ᾱtϵ, y, t | θi);

Update θi to minimize wt∥x0 − x̂0∥2
return Optimized {θi}Ki=1.

number of classes left after each stage, and a sequence
M denoting the size of a time-step subset used to com-
pute Eq. (7). For example, if S = [20, 10, 5, 1],M =
[20, 50, 100, 330] and K = 100, in the first stage, we sam-
ple a single ϵ for each time-step in {0, 50, 100, . . . , 950}
(20 time-steps) to evaluate Eq. (7) for all 100 classes,
and select 20 classes after the first stage. We summarize
the pipeline in Algorithm 2. For FGVCAircraft, we used
S = [20, 10, 5, 1],M = [20, 50, 100, 330]. For ISIC2019,
we used S = [4, 2, 1],M = [128, 256, 116]. For VeRi-776
and DukeMTMC-reID, we used S = [50, 20, 5, 1],M =
[32, 128, 256, 84]. Note that we designed these values based
on K and did not perform any search. We leave improve-
ments to the evaluation pipeline as future work.

Algorithm 2: TiF Learner Inference

Input : Optimized {θi}Ki=1, pre-trained stable
diffusion d, y, test image x, number of
stages s, number of selected classes in
each stage S such that S[s] = 1, number of
used time-steps in each stage M .

S ← {1, . . . ,K};
Compute rt for t ∈ {1, . . . , T} with Eq. (9);
Set ec ← 0 for each c ∈ {1, . . . ,K};
for i = 1, . . . , s do

for c ∈ S do
T ← arange(0, T, T/M [s]);
for t ∈ T do

Sample xt ∼ q(xt|x);
e← −rt∥x− d(xt, y, t | θc)∥2;
ec ← ec + e;

Select top-S[i] classes c in S with largest ec;
S ← selected top-S[i] classes;

ĉ← S;
return Prediction ĉ ∈ {1, . . . ,K}.
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Method FGVCAircraft ISIC2019

1 2 4 8 16 1 2 4 8 16

C
L

IP

Zero-Shot [7] 24.9 12.5
CoOp [12] 25.3 27.7 35.7 35.1 39.9 13.0 12.2 19.9 22.4 23.3
Co-CoOp [11] 27.4 28.9 33.5 35.9 37.9 10.0 12.6 15.1 16.1 17.7
MaPLe* [3] 27.7 31.0 33.7 40.8 45.2 11.2 13.1 16.7 18.9 23.2

O
pe

nC
L

IP Zero-Shot [7] 42.3 16.9
Linear-probe [7] 17.9 33.3 44.2 53.3 59.9 10.3 12.5 17.9 20.2 21.8
Tip-Adapter [9] 46.9 49.2 53.0 57.4 59.4 20.3 22.1 26.6 31.7 35.6
Tip-Adapter-F [9] 49.8 52.7 56.9 61.7 67.6 19.2 22.6 27.5 32.6 37.5
CaFo* [10] 50.2 53.8 58.7 62.9 67.0 - - - - -

D
M Zero-Shot [4] 24.3 11.7

TiF learner 48.4 54.4 66.2 72.3 79.3 20.3 23.2 31.0 34.8 40.1

Table A2. N -shot accuracies on FGVCAircraft and ISIC2019 with seed 2. Supplementary to Table 1 (seed 1).

Method FGVCAircraft ISIC2019

1 2 4 8 16 1 2 4 8 16

C
L

IP

Zero-Shot [7] 24.9 12.5
CoOp [12] 24.1 29.7 32.4 37.7 40.5 15.9 20.9 18.2 20.8 26.4
Co-CoOp [11] 29.2 29.1 31.5 37.4 40.7 14.0 15.6 16.1 18.6 23.6
MaPLe* [3] 22.5 28.2 33.6 39.4 46.1 12.6 14.0 18.4 21.2 27.1

O
pe

nC
L

IP Zero-Shot [7] 42.3 16.9
Linear-probe [7] 21.1 35.8 43.6 55.6 58.6 12.8 16.3 17.9 20.6 22.8
Tip-Adapter [9] 47.0 50.6 53.0 57.0 60.1 23.0 28.3 28.8 31.7 35.6
Tip-Adapter-F [9] 50.5 52.2 55.6 62.4 67.0 23.2 26.2 24.3 32.5 38.2
CaFo* [10] 51.4 53.4 58.0 62.7 65.9 - - - - -

D
M Zero-Shot [4] 24.3 11.7

TiF learner 47.7 57.9 64.3 72.5 79.5 18.5 25.5 30.3 33.2 41.6

Table A3. N -shot accuracies on FGVCAircraft and ISIC2019 with seed 3. Supplementary to Table 1 (seed 1).

Method DukeMTMC-reID VeRi-776

1 2 4 8 16 1 2 4 8 16

C
L

IP CoOp [12] 8.2 10.4 17.2 29.6 33.7 11.4 13.9 18.1 30.3 34.1
Co-CoOp [11] 5.4 9.8 20.2 31.1 42.4 28.9 31.0 32.3 36.9 38.0
MaPLe [3] 11.4 31.6 41.2 54.5 61.1 33.2 41.5 42.7 56.5 66.8

O
C

Linear-probe [7] 10.5 15.8 42.2 50.7 63.1 11.7 29.3 50.9 60.2 68.6
Tip-Adapter [9] 31.1 37.0 45.9 60.1 68.6 35.3 43.8 61.3 72.2 79.5
Tip-Adapter-F [9] 29.8 33.5 54.6 74.1 85.7 35.1 46.8 62.2 78.5 87.6
TiF learner w/o c 30.3 51.0 74.1 85.0 91.5 40.3 57.7 79.1 90.4 95.9

Table A4. N -shot accuracies on DukeMTMC-reID and VeRi-776 with seed 2. Supplementary to Table 2 (seed 1).

Method DukeMTMC-reID VeRi-776

1 2 4 8 16 1 2 4 8 16

C
L

IP CoOp [12] 6.8 10.7 16.9 27.4 33.9 10.2 12.7 18.7 31.0 32.5
Co-CoOp [11] 7.9 12.4 19.5 32.4 42.1 29.5 30.4 32.9 36.4 37.8
MaPLe [3] 14.7 31.6 41.2 54.3 61.6 34.8 39.6 44.5 56.4 67.9

O
C

Linear-probe [7] 8.9 16.4 38.5 52.2 64.9 14.0 28.9 50.5 63.1 67.2
Tip-Adapter [9] 29.3 37.4 47.8 60.7 66.8 36.4 48.7 58.9 72.7 79.1
Tip-Adapter-F [9] 29.6 32.2 54.6 75.2 85.8 37.8 48.9 62.9 79.2 88.3
TiF learner w/o c 36.4 52.2 73.4 82.9 91.1 42.3 61.4 77.3 91.1 96.0

Table A5. N -shot accuracies on DukeMTMC-reID and VeRi-776 with seed 3. Supplementary to Table 2 (seed 1).

A2.3. Other Details

Attention Map. We used the code in https :
//github.com/google/prompt-to-prompt/
blob/main/null_text_w_ptp.ipynb, which
modifies Algorithm 1 in [1] by using the unconditional em-
bedding identified by [6]. In particular, the repository was
originally designed for Stable Diffusion 1.4, and we adapted
it for Stable Diffusion 2.0 and included it in Appendix.

Text Prompt. We used “a photo of a [V], a type of air-
craft.” on FGVCAircraft, “a high quality dermoscopic im-
age of [V].” on ISIC-2019, “a photo of person [V] cap-
tured by surveillance camera.” on DukeMTMC-reID, and
“a photo of car [V] captured by surveillance camera.” on
VeRi-776 for CLIP adapter baselines and our TiF learner.
For baselines, [V] is replaced by the class name. For our
method, [V] is the rare token identifier if not using class
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Method FGVCAircraft DukeMTMC-reID

1 2 4 8 16 1 2 4 8 16
SD 2.1 47.4 54.7 63.5 73.1 78.1 36.2 52.8 72.4 83.0 90.8
Encoder only 44.5 53.8 62.6 70.7 74.8 35.4 51.4 71.4 78.6 85.8
W/o mid-blocks 40.2 51.2 60.9 68.1 72.4 32.1 48.9 68.2 75.2 81.4
Ours 48.5 55.8 64.2 74.2 79.9 36.9 53.6 73.1 84.5 91.6

Table A6. Ablation on SD version and location of LoRA injections. “Encoder only” is when we only inject the linear layers in U-Net encoder. “W/o
mid-blocks” is when we only inject the linear layers in the encoder and decoder (without the in-between layers).

Method FGVCAircraft ISIC2019 DukeMTMC-reID VeRi-776

1 2 4 8 16 1 2 4 8 16 1 2 4 8 16 1 2 4 8 16
CLIP-Adapter 46.1 49.0 52.9 55.5 61.1 18.9 25.2 26.2 36.1 41.3 31.1 32.5 52.4 73.7 82.5 25.4 44.3 56.7 74.5 84.7
CoOp 24.5 31.1 35.4 41.2 50.5 12.7 14.3 16.7 21.9 33.4 9.8 12.3 18.4 31.2 34.6 12.5 15.6 20.2 31.1 34.4
Co-CoOp 32.5 33.8 38.2 46.7 52.6 15.0 19.0 20.3 25.5 32.3 10.5 13.6 22.7 34.0 50.1 28.7 33.5 34.0 41.5 62.1
MaPLe 30.2 38.4 48.8 51.6 57.3 16.0 18.2 18.9 24.7 27.8 28.9 37.6 43.2 75.0 85.7 18.8 25.9 46.0 71.2 80.7
TiF Learner 48.5 55.8 65.0 72.1 80.4 24.1 27.6 33.8 37.2 44.7 36.9 53.6 73.1 83.7 91.6 41.9 60.7 78.2 91.2 96.8

Table A7. N -shot accuracies of prompt-tuning and CLIP-adapter methods using OpenCLIP (ViT-H/14 trained on LAION-2B) compared with our TiF
learner.

names. When using class names, we add the class names
after [V]. On DukeMTMC-reID and VeRi-776, class names
or class descriptions are not available for both baselines and
our method. For CLIP adapters that ensemble CLIP pre-
diction with adapter prediction, we set the CLIP prediction
weight as 0, as CLIP prediction does not work when class
description is not available.
Comparison Fairness. We use OpenCLIP trained on the
same dataset as SD 2.0 to maximize the comparison fair-
ness. Note that SD 2.0 uses the frozen text encoder from
OpenCLIP ViT-H/14, hence we used OpenCLIP ViT-H/14
(and its adapters) as baselines for fair comparison.
Computing rt. To compute the integral efficiently, we used
end-point approximation of the integral, i.e., aggregating
[1−erf(γtδ

∗+1)], [1−erf(γtδ
∗+2)], . . . , [1−erf(γtδ

∗+
500)] until the value becomes 0.

A3. Additional Results

Additional FSL Tasks. In Table A2 to A5, we ran addi-
tional FSL tasks by altering the seed for generating the few-
shot training set. Note that all baselines and our method
share the same split when using the same seed.
Additional Ablation. In Table A6, we tried using SD 2.1
as the pre-trained DM. This leads to slightly degraded per-
formance. We conjecture that with the additional training of
SD 2.1 on the same training data as SD 2.0, the DM overfits
to the training data, hence becoming more difficult to adapt
to novel FSL tasks. We also tried injecting other U-Net
subsets, and observed that the best performance is obtained
when injecting linear layers in U-Net encoder, mid-blocks
as well as decoder.
Additional OpenCLIP Results. Please refer to Table A7.
Training Class-agnostic LoRA. In our method, we trained
class-specific LoRA matrices separately on each class. We
tried training a class-agnostic ones parameterized by θ on

Rank 64

Rank 128

Figure A2. Generated images by d(; θ) when training LoRA on few-shot
images from all classes. Trained on a 4-shot task on FGVCAircraft.

FGVCAircraft, where we used class-specific prompts yc
containing the class name, e.g., “a photo of a 707-320, a
type of aircraft”. Ideally, the trained DM should associate
the specificity of each class to its respective yc. However,
as shown in Figure A2, we find that the generated image
of the trained DM d(; θ) is sub-optimal, despite trying dif-
ferent LoRA ranks. We observed that the model seems to
be finding common feature of all classes and tends to make
the airplanes shorter (many fighter jets in the dataset are
shorter compared to commercial aircraft). This leads to re-
duced performance, e.g., 12.9% on 1-shot, 55.9% on 4-shot
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𝓛𝓛𝒕𝒕 𝒅𝒅, 𝐱𝐱𝟎𝟎,𝒚𝒚 − 𝓛𝓛𝒕𝒕(𝒅𝒅 ⋅;𝜽𝜽𝒄𝒄 , 𝐱𝐱𝟎𝟎,𝒚𝒚)

𝓛𝓛𝒕𝒕(𝒅𝒅 ⋅;𝜽𝜽𝒄𝒄′ , 𝐱𝐱𝟎𝟎,𝒚𝒚) − 𝓛𝓛𝒕𝒕(𝒅𝒅 ⋅;𝜽𝜽𝒄𝒄 , 𝐱𝐱𝟎𝟎,𝒚𝒚)
Time-step Discriminativeness

Parameterization Improvements

Figure A3. Top: Improvements in reconstruction loss by using pa-
rameterization (θc, y, t) over a pre-trained SD at each t. Bottom:
The gap in reconstruction loss of using a wrong parameterization
(θc′ , y, t) over using the ground-truth one (θc, y, t).

and 76.5% on 16-shot. We leave the exploration of this ap-
proach as future work.
Parameterization Quality. We further validate our theory
that connects small time-step to fine-grained attributes in
Figure A3, where a small time-step corresponds to the most
improvements of reconstructing fine-grained classes (after
training with Eq. 6), and also corresponds to the most dis-
criminative one to tell the ground-truth class of each test
image from the rest classes.
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