
A. Appendix

A.1. Compare with GPT-4V Preview

Since the GPT-4V(ision) Preview [86] is also able to gener-

ate object labels for images, we compare our method with it

for the recognition task. The API parameters for the GPT-

4V Preview [86] are: input image size is 2562, temperature

is zero for deterministic predictions, and detail is low with

sampling 65 output tokens. The model version from API is

gpt-4-1106-vision-preview. We prompt it to gener-

ate ten main object labels as its top-10 predictions with the

following instruction:

the instruction for OpenAI GPT-4-vision-preview API5

Describe every detail in the image by listing ten main object labels. The

answer should only contain the object labels separated by a comma, for

example, “car, airplane, dog”.

Due to the API request limit, we are able to evaluate it on

a subset of the COCO validation split, which contains 4359

out of 5000 images in total. We compare various methods in

Table A.1 with top-10 predictions, showing that our method

performs better than the GPT-4V Preview [86] across all

metrics, and the GPT-4V Preview has the second-highest

R. The PR-curves are illustrated in Figure A.1, indicating

that our method has a better P /R trade-off. Since GPT-4V

Preview consistently generates ten labels for each image, its

P is also low compared to Flamingoopen and InstructBLIP.

COCO

method prompt R P F1

CLIP [93] - 0.525 0.562 0.540

Flamingoopen [3] w/ MPT [111] list 0.556 0.794 0.647

InstructBLIP [22] list 0.613 0.897 0.725

GPT-4V Preview [86] instruct 0.625 0.601 0.610

Ours - 0.765 0.756 0.758

Table A.1. Comparison with top-10 predictions on COCO vali-

dation subset.

Cross-Validation. As we mentioned in Section 3.3, the ref-

erence labels extracted from the raw captions are imperfect

and incomplete. To verify that our method generalizes well

to predict plausible labels, we conduct a cross-validation

on the COCO validation subset, treating the GPT-4V Pre-

view’s predictions as reference labels to evaluate others. Ta-

ble A.2 demonstrates that our method consistently matches

the performance across all metrics as presented in Table 1,

in which our method ranks first in R and F1. Again, the

lower P for our method is due to the fact that our model

predicts the required number of labels, while others with a

higher P presumably predict less than ten labels. Regarding

R, LLaVA1.0 [69] ranks second in performance.

5platform.openai.com/docs/guides/vision.

Figure A.1. Precision-recall (PR) curves on COCO validation

subset. The same settings as in Figure 5.

COCO

method prompt R P F1

CLIP [93] - 0.467 0.509 0.485

CaSED [19] - 0.535 0.562 0.546

Flamingoopen [3] w/ MPT [111] list 0.517 0.760 0.609

LLaVA1.0 [69] caption 0.593 0.599 0.595

LLaVA1.5 [68] caption 0.576 0.572 0.573

BLIP-2 [65] caption 0.498 0.736 0.590

InstructBLIP [22] list 0.505 0.731 0.594

GPT-4V Preview [86] instruct 1.000 1.000 1.000

Ours - 0.632 0.651 0.641

Ours w/ top-100 - 0.823 0.473 0.600

Table A.2. Comparison with top-10 predictions on COCO vali-

dation subset, viewing GPT-4V Preview’s predictions as reference

labels. Gray row shows our top-100 predictions.

A.2. Ranking Predictions

We ablate ranking strategies for the predictions produced by

our model. Given an image, our model generates K labels

L = {L1, . . . , LK}. Each label Lk has Tk + 1 tokens,

including the special token [SEP] for the delimiter.

Ranking by CLIP Score. The first strategy is to rank the

predictions by the CLIP score:

clip(Lk) = fCLIP(image, label Lk), (A.1)

where fCLIP is the CLIP model [93] with the image encoder

of ViT-L/14 and the language encoder. The CLIP score is

based on cosine distance in the embedding space.

Ranking by Probability. The second strategy is to rank the

predictions by their probabilities in Eq. 6:

prob(Lk) =

Tk+1
Y

t=1

P (wk
t |w

k
<t,X), (A.2)

in which the probability of each label is the product of the

individual probabilities of its tokens, including the delimiter

token [SEP]. If greedy and beam search sample a particular

label multiple times, we sum up the probabilities as its final

probability.
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Ranking by Perplexity. The third one is to rank the predic-

tions by their perplexities. The perplexity is computed with

the fixed length Tk + 1 for each label:

ppl(Lk) = exp

"

�
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Tk + 1

Tk+1
X

t=1

logP (wk
t |w

k
<t,X)

#

. (A.3)

If the greedy and beam search sample a particular label mul-

tiple times, we use its minimum perplexity to ensure opti-

mal selection and accuracy.

Ranking by Cross-Modal Similarity Score. The last one

is to rank predictions by their cross-modal similarity scores,

computed with the image and label token embeddings:

sim(Lk) =
1

Tk

Tk
X

t=1

d(wk
t ,Xv), (A.4)

where d is the euclidean distance averaged over all the im-

age token embeddings for each label token embedding w
k
t :
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where M is the number of image tokens. This similarity is

also called compatibility score to measure the compatibility

between image and label embeddings, which motivates us

to select the predictions that are compatible with the corre-

sponding images. In other words, the closer the label token

embeddings are to the image token embeddings, the more

likely the label is the correct prediction.

Results. Table A.3 compares the above four ranking strate-

gies using top-5 predictions across different sampling meth-

ods for our 1.78B model trained on G3M. The greedy and 3-

way beam search samples 64 tokens for each image. Since

one-shot sampling yields ordered predictions, we sample 10

labels per image and utilize ranking strategies to select the

final top-5 predictions.

The overall best ranking strategy is using probability for

greedy search and one-shot sampling, and using CLIP score

for beam search. For R, one-shot sampling with probability

ranks first on CC3M and COCO, and the greedy search with

probability leads on OpenImages. The greedy search with

probability has a slightly higher P than one-shot sampling

with probability, but the latter has a better overall F1.

For greedy search, the compatibility score has the same per-

formance as the perplexity. For one-shot sampling, the com-

patibility score is better than the perplexity. Without a rank-

ing strategy, one-shot sampling matches the performance of

probability-based ranking, showing its effectiveness in us-

ing top-k initial tokens to decide the final top-k predictions.

No ranking strategy outperforms the CLIP score for both

greedy and beam search, yet we apply CLIP score to other

models like Flamingo, BLIP-2, InstructBLIP, and LLaVA.

greedy beam one-shot

ranking R P F1 R P F1 R P F1

CC3M

- 0.661 0.604 0.624 0.641 0.590 0.608 0.673 0.598 0.627

clip 0.646 0.604 0.617 0.630 0.594 0.605 0.643 0.588 0.608

prob 0.659 0.602 0.622 - - - 0.673 0.598 0.627

ppl 0.614 0.563 0.581 - - - 0.509 0.466 0.484

sim 0.611 0.564 0.581 0.598 0.557 0.571 0.594 0.531 0.556

COCO

- 0.606 0.802 0.687 0.585 0.772 0.663 0.618 0.799 0.695

clip 0.590 0.792 0.673 0.573 0.772 0.654 0.592 0.773 0.668

prob 0.603 0.796 0.683 - - - 0.619 0.800 0.695

ppl 0.578 0.748 0.649 - - - 0.528 0.640 0.577

sim 0.576 0.747 0.647 0.552 0.724 0.623 0.576 0.717 0.637

OpenImages

- 0.549 0.599 0.565 0.530 0.577 0.546 0.560 0.595 0.570

clip 0.540 0.598 0.560 0.525 0.580 0.544 0.543 0.591 0.559

prob 0.580 0.576 0.569 - - - 0.562 0.597 0.572

ppl 0.577 0.571 0.565 - - - 0.495 0.505 0.496

sim 0.575 0.571 0.564 0.509 0.553 0.524 0.527 0.547 0.532

Table A.3. Comparison of different ranking strategies for var-

ious sampling methods with top-5 predictions. In the case of “-”,

no ranking strategy is used, and one-shot sampling directly outputs

the top-5 labels.

CC3M COCO OpenImages

ranking R P F1 R P F1 R P F1

- 0.545 0.568 0.549 0.548 0.794 0.643 0.526 0.655 0.576

clip 0.551 0.574 0.555 0.552 0.801 0.648 0.527 0.657 0.577

Table A.4. Comparison of different ranking strategies with top-

5 predictions for Flamingoopen + MPT.

For BLIP-2, InstructBLIP, and LLaVA, whose outputs are

sentences, the CLIP score is the only choice for ranking.

But for Flamingo, since it has a same format as ours, we

can test its performance without ranking strategy. Because

it saturates at top-10, we only report its top-5 comparison.

The results are shown in Table A.4, showing that the CLIP

score is the optimal ranking strategy for those models.

A.3. Additional Results

In this section, we present additional results, mainly with

top-10 predictions, for ablation studies.

Ablation on Truncating the Decoder. We compare the re-

sults of different truncating sizes of the language decoder

with top-10 predictions in Table A.5. There is a small

performance drop, 0.745 → 0.738 in R on CC3M, with

truncating the decoder from 3B to 1.78B, while the perfor-

mances on COCO and OpenImages remain the same.

Ablation on Sampling Methods. We compare sampling

methods, i.e., greedy search, 3-way beam search, and one-

shot sampling, with top-10 predictions in Table A.6. The

results, consistent with those in Table 5, indicate that one-

shot sampling surpasses greedy and beam search in R and



F1 scores but falls short in P when considering top-10 pre-

dictions. The reason is that greedy and beam search pro-

duce ⇠7 labels average per image in top-10 due to the rep-

etition issue. Figure A.2 (right side) demonstrates satura-

tion around k = 7, accounting for their higher P in top-

10 predictions. This ablation study shows that greedy and

beam search do not produce more diverse predictions with

increasing number of tokens.

Figure A.2. Precision-recall (PR) curves of different sampling

methods on OpenImages validation split with top-10 predictions.

The same settings as in Figure 5.

Ablation on LLaMA Versions. Table A.7 compares the

results of different LLaMA versions for the language de-

coder with top-10 predictions. The top-10 results are con-

sistent with Table 7, showing LLaMA 2 is slightly better

than LLaMA 1 on G3M, and comparable on G70M.

Ablation on Embedding Models in Evaluation Metric.

The evaluation metric is based on embedding models to

compute the similarity Sij in Eq. 7. To verify the robustness

of our method, we compare the results using CLIP ViT-L/14

[93] as the metric embedding model in Table A.8. Our re-

sults are from the 1.78B model trained on G70M, and the

others are from the best settings in Table 1. Our method

consistently outperforms others in R and F1 scores, and is

competitive in P .

Ablation on Training Epochs. We conduct an ablation

study on training epochs for our 1.78B model on G3M. Ta-

ble A.9 shows the results with top-10 predictions, indicating

that training more epochs improves the performance.

Additional Main Results. Table A.10 shows the main re-

sults with top-5 predictions, consistent with those in Table

1. The performance drop on CC3M for models trained on

G3M versus G70M stems from a data distribution shift.

A.4. Evaluation Metric

The recall in evaluation metric Eq. 8 essentially represents

the top-k accuracy, which is for recognition tasks [99].

For an image, ground-truth (GT) labels are G = {gi}
M
i=1,

ordered model predictions are P = {pj}
N
j=1. The standard

recall is defined as Recall = TP/(TP + FN).

CC3M COCO OpenImages

# params R P F1 R P F1 R P F1

7.05B - 32 0.748 0.534 0.617 0.699 0.710 0.702 0.613 0.543 0.569

3.00B - 11 0.745 0.532 0.615 0.703 0.716 0.707 0.615 0.546 0.572

1.78B - 6 0.738 0.530 0.611 0.698 0.712 0.702 0.613 0.544 0.570

1.18B - 3 0.736 0.530 0.611 0.697 0.713 0.703 0.612 0.547 0.571

0.77B - 1 0.731 0.529 0.608 0.693 0.708 0.698 0.609 0.547 0.569

Table A.5. Comparison of different language decoder sizes with

top-10 predictions. The same settings as in Table 3.

CC3M COCO OpenImages

sampling R P F1 R P F1 R P F1

greedy 0.708 0.568 0.621 0.655 0.755 0.696 0.582 0.574 0.569

beam 0.681 0.557 0.604 0.623 0.725 0.665 0.557 0.552 0.546

one-shot 0.738 0.530 0.611 0.698 0.712 0.702 0.613 0.544 0.570

Table A.6. Comparison of different sampling methods with top-

10 predictions. The greedy and beam search sample 128 tokens for

each image without ranking strategies.

CC3M COCO OpenImages

version R P F1 R P F1 R P F1

trained on G3M

1 0.738 0.530 0.611 0.698 0.712 0.702 0.613 0.544 0.570

2 0.740 0.531 0.612 0.700 0.714 0.705 0.614 0.547 0.571

trained on G70M

1 0.722 0.512 0.593 0.765 0.757 0.758 0.663 0.564 0.603

2 0.721 0.512 0.593 0.765 0.756 0.758 0.662 0.563 0.602

Table A.7. Comparison of truncating different LLaMA ver-

sions for the language decoder with top-10 predictions.

CC3M COCO OpenImages

method R P F1 R P F1 R P F1

CLIP 0.799 0.746 0.771 0.774 0.783 0.778 0.762 0.725 0.742

Flamingo 0.842 0.842 0.841 0.835 0.922 0.875 0.838 0.863 0.849

BLIP-2 0.864 0.838 0.850 0.854 0.961 0.904 0.822 0.864 0.841

InstBLIP 0.883 0.827 0.853 0.892 0.887 0.889 0.878 0.842 0.859

Ours 0.908 0.825 0.864 0.915 0.911 0.913 0.881 0.838 0.858

Table A.8. Comparison with top-10 predictions using CLIP ViT-

L/14 [93] as the embedding model in evaluation metric.

CC3M COCO OpenImages

epoch R P F1 R P F1 R P F1

1 0.654 0.487 0.553 0.620 0.623 0.620 0.591 0.520 0.548

2 0.698 0.509 0.583 0.659 0.667 0.661 0.604 0.528 0.558

3 0.738 0.530 0.611 0.700 0.712 0.702 0.613 0.544 0.570

Table A.9. Comparison of different training epochs with top-10
predictions.

For recognition tasks, GT should either be TP (correctly

identified) or FN (missed), i.e., TP + FN = |G| = M ,

then

Recall =
TP

TP + FN
=

TP

|G|
=

TP

M
. (A.6)

For closed-set recognition, TP =
PM

i=1 I(gi ∈ P), where

gi ∈ P is a greedy matching – correct prediction is exactly

the same as gi with maximum semantic similarity, e.g., gi =



CC3M COCO OpenImages

method models (vision + lang) prompt data scale # params (B) R P F1 R P F1 R P F1

CLIP [93] ViT L-14 + CLIPlang - 400M 0.43 0.515 0.481 0.493 0.468 0.590 0.523 0.460 0.485 0.467

CaSED [19] ViT L-14 + Retrieval - 12M 0.43 0.577 0.520 0.541 0.533 0.666 0.590 0.490 0.506 0.492

CLIP [93] ViT L-14 + CLIPlang - 400M 0.43 0.400 0.388 0.390 0.385 0.489 0.427 0.349 0.366 0.354

CaSED [19] ViT L-14 + Retrieval - 403M 0.43 0.571 0.521 0.539 0.532 0.683 0.596 0.498 0.526 0.505

Flamingoopen [3] ViT L-14 + LLaMA 1 [112] list 2.1B 8.34 0.542 0.541 0.535 0.541 0.726 0.616 0.524 0.622 0.561

Flamingoopen ViT L-14 + LLaMA 1 caption 2.1B 8.34 0.539 0.523 0.525 0.547 0.712 0.614 0.533 0.608 0.561

Flamingoopen ViT L-14 + MPT [111] list 2.1B 8.13 0.551 0.574 0.555 0.552 0.801 0.648 0.527 0.657 0.577

Flamingoopen ViT L-14 + MPT caption 2.1B 8.13 0.532 0.537 0.528 0.551 0.762 0.635 0.544 0.655 0.588

LLaVA1.0 [69] ViT L-14 + LLaMA 2 [113] list 753K 13.3 0.537 0.522 0.522 0.574 0.790 0.659 0.545 0.632 0.578

LLaVA1.0 ViT L-14 + LLaMA 2 caption 753K 13.3 0.588 0.520 0.547 0.601 0.755 0.667 0.545 0.557 0.545

LLaVA1.0 ViT L-14 + LLaMA 2 instruct 753K 13.3 0.566 0.507 0.531 0.600 0.746 0.662 0.567 0.589 0.571

LLaVA1.5 [68] ViT L-14 + Vicuna [16] list 1.2M 13.4 0.535 0.523 0.521 0.581 0.800 0.666 0.545 0.618 0.573

LLaVA1.5 ViT L-14 + Vicuna caption 1.2M 13.4 0.581 0.510 0.543 0.600 0.751 0.664 0.551 0.560 0.555

LLaVA1.5 ViT L-14 + Vicuna instruct 1.2M 13.4 0.552 0.530 0.532 0.589 0.786 0.667 0.566 0.607 0.576

BLIP-2 [65] ViT g-14 + Flant5xxl [17] list 129M 12.2 0.541 0.558 0.541 0.482 0.842 0.606 0.466 0.626 0.526

BLIP-2 ViT g-14 + Flant5xxl caption 129M 12.2 0.594 0.549 0.564 0.600 0.894 0.714 0.523 0.626 0.561

InstructBLIP [22] ViT g-14 + Flant5xxl list 129M 12.3 0.593 0.559 0.569 0.613 0.897 0.725 0.546 0.640 0.582

InstructBLIP ViT g-14 + Flant5xxl caption 129M 12.3 0.603 0.535 0.561 0.604 0.752 0.667 0.572 0.585 0.572

InstructBLIP ViT g-14 + Flant5xxl instruct 129M 12.3 0.529 0.605 0.556 0.569 0.881 0.686 0.559 0.698 0.614

Ours ViT L-14 + Langtruncated - 3M 1.78 0.673 0.598 0.627 0.618 0.799 0.695 0.560 0.595 0.570

Ours ViT L-14 + Langtruncated - 70M 1.78 0.659 0.577 0.609 0.674 0.866 0.755 0.594 0.615 0.597

Table A.10. Comparison of different methods with top-5 predictions. The same settings as in Table 1.

pj = cat, and I(·) is binary. This Recall is also called Exact

Recall [124], also known as accuracy in image classification

tasks [99]. In detail, to evaluate a classifier on ImageNet,

each image has M = 1 GT label and N = 1000 class

predictions, then Eq. A.6 becomes

top-k accuracy = Recall = I(g1 ∈ P1:k), (A.7)

For open-set recognition, TP =
PM

i=1 I(gi ∈ P), gi ∈ P is

a greedy matching but I(·) is not binary because correct pre-

diction might not be exactly the same as gi. For instance,

gi = cat, pj = kitty or feline or moggie are all cor-

rect with high semantic similarity, and pj = dog or desk

are wrong with low semantic similarity. I(·) is continuous

to represent degrees of semantic similarity between gi and

pj . One common choice for I(·) is cosine similarity Sij be-

tween contextual embeddings of gi and pj , then Eq. A.6

becomes

Recall =
1

M

MX

i=1

maxj Sij , (A.8)

which is a.k.a. BERT Recall [124]. For the open-set case,

each image has M ≥ 1 GT labels and N ≥ 1 predictions,

then top-k accuracy is

Rtop-k
ecall =

1

M

MX

i=1

I(gi ∈ P1:k) =
1

M

MX

i=1

maxj∈[1,k] Sij .

(A.9)

The top-k refers to the k most relevant predictions of all

possible labels in the world to the image.

A.5. Data Preprocessing

For an image, the paired caption is preprocessed using the

steps summarized in the following table.

step details

1 Lowercase the caption.

2 Eliminate high-frequency noise words that lack meaningful

content. The noise words removed in our work are [ person,

persons, stock, image, images, background, ounce, illustration,

front, photography, day ].

3 Keep only the letters, and a few special characters like spaces ( ),

periods (.), commas (,), ampersands (&), and hyphens (-).

Exclude all others, including numbers and words containing

numbers.

4 Use NLTK [8] to tokenize the caption into words. Then tag the

words with their part-of-speech (POS) tags to filter out words that

are not nouns. The noun tags used in this paper are [ NN, NNS ].

5 Lemmatize the words to their root forms. For example, the word

“dogs” is lemmatized to “dog”.

With this preprocessing, we obtain a set of meaningful noun

words for each image and summarize the information in

the following table, including the number of image-caption

pairs and distinct nouns.

CC3M COCO SBU OpenImages LAION

statistics train val train val train val train

# images 2.69M 12478 118287 5000 828816 41686 67M

# nouns 22890 4875 15444 3834 132372 3119 2.7M

The training split contains 2,794,419 distinct nouns, while

all validation splits have a total of 8,637 distinct nouns. The



number of overlapping nouns between the training and val-

idation splits is 8,347, which is 97.8% of distinct nouns in

validation splits.

A.6. Prompt Settings

For training, we adopt the prompt augmentation, which con-

tains different prompt templates but with the same semantic

meaning. In each training iteration, we randomly select one

prompt from those templates for the batched images. For in-

ference, we only use one simple prompt in all experiments.

The prompt templates are listed as follows.

setting prompt templates

training The objects in the image are

The items present in the picture are

The elements depicted in the image are

The objects shown in the photograph are

The items visible in the image are

The objects that appear in the picture are

The elements featured in the image are

The items captured in the photograph are

The elements seen in the picture are

The items represented in the image are

inference The objects in the image are

For comparison, we evaluate chat-based VQA models, i.e.,

BLIP-2 [65], InstructBLIP [22], and LLaVA [68, 69], with

two types of prompt, which are

1) text completion: The objects in the image are,

2) and VQA: Describe every detail in the image.

We refer to the text completion prompt as prompt: list and

the VQA prompt as prompt: caption. After obtaining model

outputs, we apply the rule from Section A.5 to extract nouns

as predicted labels.

Especially, Flamingo [1, 3] has a unique prompt setting

with few-shot instruction. For the caption type, we change

the prompt setting to What objects are in the image?.

Then we construct the prompt with 4-shot samples as in [1],

which is listed as the following tables.

the list prompt type with few-shot samples for Flamingo

<image>The objects in the image are boy, bush, chair, clothes,

grass, house, tree, sports ball.<|endofchunk|> <image>The

objects in the image are bus, car, clouds, house, leaves, person,

road.<|endofchunk|> <image>The objects in the image are

giraffe, grass, tree.<|endofchunk|> <image>The objects in the

image are cat, telecontroller, sofa.<|endofchunk|> <image>The

objects in the image are

the reference images as few-shot samples for Flamingo

CC3M COCO OpenImages

# tokens R P F1 R P F1 R P F1

prompt: list

64 0.542 0.556 0.540 0.482 0.842 0.606 0.455 0.622 0.518

128 0.544 0.557 0.542 0.494 0.871 0.623 0.476 0.641 0.538

256 0.542 0.556 0.540 0.482 0.842 0.606 0.455 0.622 0.518

prompt: caption

64 0.601 0.539 0.561 0.600 0.893 0.714 0.523 0.626 0.562

128 0.609 0.539 0.561 0.600 0.893 0.714 0.523 0.626 0.562

256 0.600 0.539 0.560 0.601 0.894 0.714 0.512 0.643 0.562

Table A.11. Different number of sampling tokens for BLIP-2

with top-10 predictions.

CC3M COCO OpenImages

# tokens R P F1 R P F1 R P F1

prompt: list

256 0.596 0.554 0.567 0.613 0.897 0.725 0.546 0.640 0.582

512 0.596 0.554 0.567 0.613 0.897 0.725 0.544 0.634 0.578

prompt: caption

256 0.639 0.487 0.546 0.690 0.662 0.673 0.647 0.539 0.581

512 0.639 0.487 0.546 0.690 0.662 0.673 0.647 0.539 0.581

Table A.12. Different number of sampling tokens for Instruct-

BLIP with top-10 predictions.

A.7. Number of Sampling Tokens in Comparison

We have various models to compare with ours. For a fair

comparison, we need to take care of the maximum number

of sampling tokens for each model to make sure that we

can extract enough potential nouns words from their out-

puts. LLaVA [68, 69] has a maximum number of sampling

tokens of 1024, which is already enough for the task. BLIP-

2 [65] has a maximum 32 in default, but we change it to 64

for top-5 and 128 for top-10. To verify this setting is fair for

BLIP-2, we ablate the number of sampling tokens for BLIP-

2 with the caption prompt in Table A.11. For InstructBLIP

[22], we use its default number of sampling tokens, which is

256 for top-5 and top-10. To verify the setting, we ablate the

number of sampling tokens for InstructBLIP in Table A.12.

Due to Flamingo [1, 3] has the same output format as ours,

we keep the same maximum number of sampling tokens for

it as ours for greedy search, i.e., 64 for top-5. We double the

number to 128 for its top-10 predictions. For VQA meth-

ods, sampling more tokens for more potential predictions

significantly increases time cost, esp. with beam search.

A.8. Visualizing Predictions

We visualize the top-10 predictions from our 1.78B model

trained on G70M in Figure A.3-A.9 without cherry-picking.

The image is paired with two columns: our predictions on

the left, probability-indicating ranking bars on the right.

The images sampled from COCO have gray column to show

GPT-4V Preview’s [86] predictions, intuitively illustraing

the strengths and weaknesses of our method with the apples-

to-apples comparison.



A.9. Discussion

In this section, we discuss the limitations of our method and

experiments that we have tried but does not work well.

Less Is More. Our method’s performance heavily relies on

the quality of the training data. More noisy data will hurt

the performance, for example, models trained on the nois-

ier CC12M [12] underperform compared to those trained on

CC3M [104]. Moreover, high quality requires more human

efforts, which is expensive, meaning to densely annotate all

possible labels for each image. We might consider using

GPT-4V [86] for generating high-quality labels, though it

may be costly (API expenses) and subject to the hallucina-

tion issue. Exploring methods to train models with fewer

labels for broader generalization could be intriguing.

Defining Labels. How to define the label for describing an

object in an image? A label could be a word, which is used

in this paper, but also could be a phrase or a sentence. We

have tried to define the label with the noun phrase, which in-

cludes an adjective, for example, “gray car” and “cute boy”.

However, these models underperformed, partly due to poor

training data quality and the limitations of the parser for ex-

tracting noun phrases from captions. We also experimented

with concrete nouns for training, but the results were un-

satisfactory due to noisy reference labels produced by the

parser, which needs a comprehensive filter to remove noise.

Evaluation. First, our evaluation has limitations due to

the incomplete and imperfect nature of reference labels de-

rived from raw captions. Second, we calculate P , R and F1

score based on the semantic similarity between the embed-

dings of predicted and reference labels from a pretrained

language model. However, such a model-based semantic

similarity brings noise and bias to the evaluation results due

to the model imperfection. This motivates us to conduct the

cross-validation experiments in Section A.1, which views

GPT-4V’s [86] predictions as reference labels. Develop-

ing a reliable evaluation metric beyond human evaluation

or model-based semantic similarity is an interesting topic.

Fine-Grained Recognition. Our method, though not de-

signed for fine-grained recognition, could be adapted for

such tasks. Currently, the method underperforms in this

area due to the use of general, rather than fine-grained, train-

ing data. Improving performance may be possible by using

more specific, fine-grained training data, which circles back

to the initial question regarding the quality of training data.

Single-Label Prediction. Our method is optimized for top-

k predictions and exhibits lower performance in top-1 ac-

curacy evaluations. Our approach encourages the model to

predict multiple labels for an image, which is more realis-

tic than predicting just one label because images generally

contain multiple objects. Therefore, we do not focus on im-

proving top-1 accuracy in this paper.

Competition Issue. We acknowledge the inherent compet-

itive issue in our one-shot sampling, similar to the repeti-

tion issue observed in sequence-based methods like greedy

and beam search. However, its results are still promising

in experiments, which is likely due to redundant tokeniza-

tion. Mitigating or analyzing the competition issue for the

one-shot sampling could be our future research topic.

A.10. Other Related Works

Approaching object recognition as a natural language pre-

diction, pioneered by [4, 31, 85], has been proposed be-

fore the deep learning era [63]. The motivation is primarily

to assist journalists in annotating images for retrieval pur-

poses [5, 79]. [85] slices an image into regions and predicts

words using probabilistic models. [31] views recognition as

a machine translation problem, aligning image regions with

words using a lexicon, optimized by the EM algorithm [24].

Image Annotation and Multi-label Prediction. The evo-

lution of image annotation or tagging closely mirrors that of

multi-label prediction. Initial approaches develop on topic

models [53] like latent Dirichlet allocation [5] and proba-

bilistic latent semantic analysis [49, 84]. Mixture models

[32, 52, 62] have also been explored to model the joint dis-

tributions over images and tags. Then SVM-based discrim-

inative models [21, 47, 54] are proposed to predict tags.

Later, the annotation task is treated as a retrieval problem

[39, 76] based on nearest neighbors [20] or joint optimiza-

tion [13]. The difficulty of collecting multi-label annota-

tions inspires curriculum learning-based models [18, 30]

and semi-supervised methods [33, 101, 107]. Now models

with ranking-based losses [37] and transformer-based archi-

tecture [51, 71, 98, 125] are introduced for tagging images,

but they are still closed-set recognition models trained on

heavily-annotated/cleaned datasets. In contrast, our method

is an open-set recognition model trained on raw data, which

is at the real open-level with a large-scale prediction capa-

bility (top-100). In the figure below, our model correctly

predicts the wild terms such as sora, cloudscape, text,

logo, letter, art, and animation, assigning probabili-

ties for ranking or filtering, while [125] does not.

Recognize Anything [125]

Our Top-20 Predictions

| prob: 0.54264 - cloud 
| prob: 0.09989 - word 
| prob: 0.07556 - sky 
| prob: 0.03171 - letter 
| prob: 0.01874 - sora 
| prob: 0.01388 - logo 
| prob: 0.01000 - text

cloud | cloudy | float | sea | sky

| prob: 0.00719 - top 
| prob: 0.00719 - blue 
| prob: 0.00682 - title 
| prob: 0.00611 - photo 
| prob: 0.00430 - picture 
| prob: 0.00288 - sonora 
| prob: 0.00271 - middle

| prob: 0.00256 - storm 
| prob: 0.00200 - name 
| prob: 0.00200 - cloudscape 
| prob: 0.00190 - sun 
| prob: 0.00188 - art 
| prob: 0.00182 - animation 
| prob: 0.00179 - air
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Figure A.3. Top-10 predictions on COCO validation split without cherry-picking. The top bar is with the first prediction’s probability. The

right column shows predictions in gray from the GPT-4V Preview. Images are licensed under a Creative Commons Attribution 2.0 License.

https://www.flickr.com/creativecommons/


Figure A.4. Top-10 predictions on COCO validation split without cherry-picking. The top bar is with the first prediction’s probability. The

right column shows predictions in gray from the GPT-4V Preview. Images are licensed under a Creative Commons Attribution 2.0 License.

https://www.flickr.com/creativecommons/


Figure A.5. Top-10 predictions on COCO validation split without cherry-picking. The top bar is with the first prediction’s probability. The

right column shows predictions in gray from the GPT-4V Preview. Images are licensed under a Creative Commons Attribution 2.0 License.

https://www.flickr.com/creativecommons/


Figure A.6. Top-10 predictions on CC3M validation split without cherry-picking. The top bar is with the first prediction’s probability.

Images in the dataset of CC3M are provided by Google LLC.

https://github.com/google-research-datasets/conceptual-captions/blob/master/LICENSE


Figure A.7. Top-10 predictions on CC3M validation split without cherry-picking. The top bar is with the first prediction’s probability.

Images in the dataset of CC3M are provided by Google LLC.

https://github.com/google-research-datasets/conceptual-captions/blob/master/LICENSE


Figure A.8. Top-10 predictions on OpenImages validation split without cherry-picking. The top bar is with the first prediction’s probability.

Images in the dataset of OpenImages are under a Creative Commons Attribution 2.0 License.

https://storage.googleapis.com/openimages/web/factsfigures_v7.html


Figure A.9. Top-10 predictions on OpenImages validation split without cherry-picking. The top bar is with the first prediction’s probability.

Images in the dataset of OpenImages are under a Creative Commons Attribution 2.0 License.

https://storage.googleapis.com/openimages/web/factsfigures_v7.html
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