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Supplementary Material

A. Implementation Details of Experiments
A.1. Details of Table 1

All parameters in the experiments presented in Table 1 are
consistent with the specifications of RoBal [45]. Key con-
figurations include an initial learning rate of 0.1, with a de-
cay factor of 10 applied at the 60th and 75th epochs, cul-
minating in a total training period of 80 epochs. An SGD
momentum optimizer is employed with a weight decay of
2 × 10−4. The batch size is maintained at 64. For the
adversarial training, we adopt a maximum perturbation of
8/255 and a step size of 2/255, with the internal maxi-
mization process involving 5 iterations, denoted as PGD-
5. For CIFAR-10-LT, the parameters include m0 = 0.1,
scaling factor s = 10, bias term τb = 1.5, and margin
term τm = 0.3; for CIFAR-100-LT, the parameters include
m0 = 0.3, s = 10, τb = 1.5, and τm = 0.3. The specific
hyperparameters for each experiment are detailed in Table
8.

A.2. Details of Data Augmentation Approaches

Data augmentation techniques such as MixUp [51],
Cutout [9], CutMix [49], Augmix [17], AutoAugment
(AuA) [6], RandAugment (RA) [7], and TrivialAugmen
(TA) [32] are employed utilizing the implementations pro-
vided in torchvision 0.16.01. Regarding integrating data
augmentation into the adversarial training pipeline, we fol-
low the approach outlined in [34], whereby data aug-
mentation precedes the generation of adversarial examples
through adversarial attacks. It is observed that reversing this
order, i.e., performing data augmentation after adversarial
attacks, leads to the disruption of adversarial perturbations,
significantly diminishing the effectiveness of the adversarial
attacks.

A.3. Code References

For the defense methods compared in our paper, we
utilize the official code releases, including AT [30]2,
TRADES [52]3, MART [41]4, AWP [44]5, GAIRAT [53]6,
LAS-AT [19]7, RoBal [45]8, and REAT [25]9. Regarding

1https://github.com/pytorch/pytorch
2https://github.com/MadryLab/cifar10 challenge
3https://github.com/yaodongyu/TRADES
4https://github.com/YisenWang/MART
5https://github.com/csdongxian/AWP
6https://github.com/zjfheart/Geometry-aware-Instance-reweighted-

Adversarial-Training
7https://github.com/jiaxiaojunqaq/las-at
8https://github.com/wutong16/Adversarial Long-Tail
9https://github.com/GuanlinLee/REAT
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Figure 8. The class-wise robustness under AA for various algo-
rithms on CIFAR-100-LT at the best checkpoint. (a) ResNet-18;
(b) WideResNet-34-10.

the attacks used for evaluation, we implement them by re-
ferring to several official code repositories and the original
papers, encompassing FGSM [12], PGD [30], CW [3], and
AutoAttack [5]10.

B. Extensive Experiments

B.1. More Ablation Studies of RoBal

In addition to the experiments conducted on ResNet-18 and
CIFAR-10-LT as presented in Table 1, we extend our abla-
tion studies to include WideResNet-34-10 and CIFAR-100-
LT, as illustrated in Tables 9, 10, and 11. The results align
with the conclusions drawn from Table 1, demonstrating
that AT-BSL achieves comparable performance in terms of
clean accuracy and robustness to the complete RoBal frame-
work. Moreover, a significant advantage is observed regard-
ing training time and memory consumption.

B.2. Experiments on CIFAR-100-LT

Tables 12 and 13 reveal that on CIFAR-100-LT, AT-BSL
with data augmentation achieves the highest clean accu-
racy and adversarial robustness on both ResNet-18 and
WideResNet-34-10. Compared to the improvement ob-
served on CIFAR-10-LT, the improvements on CIFAR-100-
LT are less pronounced, likely due to the more significant
number of classes and fewer examples per class, making
advancements more challenging.

In Fig. 8, we illustrate the robustness of different meth-
ods across each class. Given the extremely low robustness
in most classes on CIFAR-100-LT and the presence of only
50 images per class in the test set, we report the average
values for every 10 classes. Notably, AuA universally im-
proves the robustness across all class groups.

10https://github.com/fra31/auto-attack

https://github.com/pytorch/pytorch
https://github.com/MadryLab/cifar10_challenge
https://github.com/yaodongyu/TRADES
https://github.com/YisenWang/MART
https://github.com/csdongxian/AWP
https://github.com/zjfheart/Geometry-aware-Instance-reweighted-Adversarial-Training
https://github.com/zjfheart/Geometry-aware-Instance-reweighted-Adversarial-Training
https://github.com/jiaxiaojunqaq/las-at
https://github.com/wutong16/Adversarial_Long-Tail
https://github.com/GuanlinLee/REAT
https://github.com/fra31/auto-attack


Table 8. The specific hyperparameters for each experiment following the integration of components from RoBal [45] into AT [30]. Cos:
Cosine Classifier; BSL: Balanced Softmax Loss [35]; CM: Class-aware Margin [45]; TRADES: TRADES Regularization [52].

Method Components CIFAR-10-LT CIFAR-100-LT

Cos BSL CM TRADES m0 s τb τm m0 s τb τm

AT [30] 0 1 0 0 0 1 0 0
AT-BSL ✓ 0 1 1 0 0 1 1 0

AT-BSL-Cos ✓ ✓ 0.1 10 1 0 0.3 10 1 0
AT-BSL-Cos-TRADES ✓ ✓ ✓ 0.1 10 1.5 0 0.3 10 1.5 0

RoBal [45] ✓ ✓ ✓ ✓ 0.1 10 1.5 0.3 0.3 10 1.5 0.3

Table 9. The clean accuracy, robustness, time (average per epoch), and memory (GPU) using WideResNet-34-10 [50] on CIFAR-10-LT
following the integration of components from RoBal [45] into AT [30]. The best results are bolded. The second best results are underlined.
Cos: Cosine Classifier; BSL: Balanced Softmax Loss [35]; CM: Class-aware Margin [45]; TRADES: TRADES Regularization [52].

Method Components Accuracy Efficiency

Cos BSL CM TRADES Clean FGSM PGD CW LSA AA Time (s) Memory (MiB)

AT [30] 60.86 33.22 28.79 29.24 31.27 27.66 160.01 2574
AT-BSL ✓ 73.84 39.13 32.02 32.29 34.98 30.21 162.01 2574

AT-BSL-Cos ✓ ✓ 74.69 40.86 34.77 31.14 30.50 29.22 163.71 2574
AT-BSL-Cos-TRADES ✓ ✓ ✓ 73.34 41.28 36.49 31.79 31.55 30.05 302.62 6932

RoBal [45] ✓ ✓ ✓ ✓ 72.82 41.34 36.42 32.48 31.95 30.49 309.09 6932

B.3. Experiments on Tiny-ImageNet-LT

To analyze if BSL and data augmentation are as important
for high-resolution datasets as they are for low-resolution
datasets (such as CIFAR-10-LT and CIFAR-100-LT), we
conduct experiments on Tiny-ImageNet [23]. Firstly, Tiny-
ImageNet is a dataset consisting of 200 classes, with im-
ages sized 64*64 pixels, making it four times the resolution
of CIFAR-10/100. We derive Tiny-ImageNet-LT using an
IR of 0.1 from Tiny-ImageNet. Following [19, 24], we
employ the PreActResNet-18 model [16]. Apart from the
model, the experimental setup for Tiny-ImageNet-LT re-
mains largely similar to that of CIFAR-10-LT. As observed
from Table 14, both BSL and data augmentation are crucial
for Tiny-ImageNet-LT.

B.4. Different PGD Steps

To investigate the impact of PGD steps on robustness, we
assess the robustness achieved using different PGD steps
following [45]. Table 15 indicates that RA consistently
improves the robustness of AT-BSL regardless of PGD
steps, and the clean accuracy also experiences improve-
ment. Moreover, there is a trade-off between clean accuracy
and robustness: as the PGD step increases, clean accuracy
decreases while robustness improves. The optimal trade-off
is attained at PGD-10. Hence, we employ PGD-10 in our
experiments involving AT-BSL.

B.5. Different Weight Decays

During our replication of the experiments of REAT [25], we
observe a discrepancy in the weight decay parameters used:
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Figure 9. The clean accuracy and robustness under AA for var-
ious algorithms with different weight decay using ResNet-18 on
CIFAR-10-LT at the best checkpoint.

REAT employed a weight decay of 5 × 10−4, contrasting
with 2 × 10−4 used by RoBal [45]. This leads us to con-
duct experiments using varying values of weight decay. The
results, depicted in Fig. 9, indicate that a weight decay of
5 × 10−4 offers a significant improvement over 2 × 10−4

in terms of both accuracy and robustness. However, fur-
ther increasing the weight decay beyond 5 × 10−4 results
in a noticeable decline in accuracy. Therefore, we employ a
weight decay of 5× 10−4 in our experiments.

B.6. Different Batch Sizes

While replicating the experiments of REAT [25], we note
an inconsistency in the batch size settings: REAT utilized
a batch size of 128, whereas RoBal utilized 64. To address
this, we conduct experiments with different batch sizes, and
the results are presented in Table 16. The findings indicate
that the performance with batch sizes 64 and 128 are com-
parable, and both outperform larger batch sizes; however,
128 is more commonly used and helps speed up training.



Table 10. The clean accuracy, robustness, time (average per epoch) and memory (GPU) using ResNet-18 [15] on CIFAR-100-LT following
the integration of components from RoBal [45] into AT [30]. The best results are bolded. The second best results are underlined. Cos:
Cosine Classifier; BSL: Balanced Softmax Loss [35]; CM: Class-aware Margin [45]; TRADES: TRADES Regularization [52].

Method Components Accuracy Efficiency

Cos BSL CM TRADES Clean FGSM PGD CW LSA AA Time (s) Memory (MiB)

AT [30] 44.32 18.81 15.11 15.36 17.85 13.91 43.25 946
AT-BSL ✓ 45.78 21.58 18.96 17.78 18.48 16.35 41.99 946

AT-BSL-Cos ✓ ✓ 41.83 17.95 14.69 14.22 14.87 13.14 43.86 946
AT-BSL-Cos-TRADES ✓ ✓ ✓ 37.50 16.92 14.05 13.98 14.52 12.87 72.34 1724

RoBal [45] ✓ ✓ ✓ ✓ 45.93 21.35 17.40 17.80 19.14 16.42 72.93 1724

Table 11. The clean accuracy, robustness, time (average per epoch), and memory (GPU) using WideResNet-34-10 [50] on CIFAR-100-LT
following the integration of components from RoBal [45] into AT [30]. The best results are bolded. The second best results are underlined.
Cos: Cosine Classifier; BSL: Balanced Softmax Loss [35]; CM: Class-aware Margin [45]; TRADES: TRADES Regularization [52].

Method Components Accuracy Efficiency

Cos BSL CM TRADES Clean FGSM PGD CW LSA AA Time (s) Memory (MiB)

AT [30] 48.87 21.14 17.20 17.61 21.23 16.27 319.33 2574
AT-BSL ✓ 49.68 23.08 19.81 19.47 21.19 17.84 323.66 2574

AT-BSL-Cos ✓ ✓ 48.29 20.25 16.34 16.43 17.90 15.09 327.17 2574
AT-BSL-Cos-TRADES ✓ ✓ ✓ 44.37 18.94 15.48 15.70 17.02 14.43 603.99 6936

RoBal [45] ✓ ✓ ✓ ✓ 50.08 23.04 18.84 19.30 21.87 17.90 617.73 6936

Consequently, we employ a batch size of 128 in our experi-
ments.

B.7. Different Training Epochs

As indicated in Table 17, the results between 80 and 100
training epochs show little difference without data augmen-
tation. However, we observe that a higher number of train-
ing epochs leads to increased robustness with data aug-
mentation. This improvement is likely attributable to the
augmented diversity of examples, necessitating a more ex-
tended learning period for the model.

B.8. Hyperparameter Tuning of RoBal

Through hyperparameter tuning similar to those done for
AT-BSL using ResNet-18 on CIFAR-10-LT, we find that
RoBal achieves the best results with PGD-10, weight decay
of 2 × 10−4, batch size of 64, epochs of 60, and τb = 1.5.
The robustness under AA reaches 31.61%, which is close to
the performance of AT-BSL.

B.9. Retraining RoBal and REAT

Compared to RoBal [45], our primary experiments em-
ploy different experimental settings, including previously
discussed variables like PGD steps, weight decay, batch
size, and training epochs. To facilitate a fairer comparison,
we adapt these settings in our main experiments: chang-
ing PGD-5 to PGD-10, weight decay from 2 × 10−4 to

5 × 10−4, batch size from 64 to 128, and increasing train-
ing epochs from 80 to 100, and then we retrain RoBal un-
der these settings, referred to as RoBal (retraining). Com-
pared with REAT [25], the only discrepancy is in the train-
ing epochs. Therefore, we adjusted REAT’s training epochs
to 100 and conducted a retraining called REAT (retraining).
The results are presented in Table 18. The retrained RoBal
is observed to achieve improved robustness, albeit at a slight
cost to accuracy. Conversely, the retrained REAT displays
even lower robustness than its initial version. Through this
comparison, we note that the robustness achieved by the re-
trained RoBal and REAT is similar to that of the vanilla
AT-BSL.

B.10. Other Data Augmentation Methods

Data Augmentations Designed for Long-Tailed Distri-
butions. CUDA [2]11 initially discovered that an appro-
priate level of augmentation needs to be allocated for each
class to mitigate class imbalance issues. Inspired by this
finding, [2] introduces a curriculum to identify the ap-
propriate data augmentation strength for each class, called
CUDA: CUrriculum of Data Augmentation for long-tailed
recognition. To assess CUDA’s performance in adversar-
ial training under long-tailed distributions, we augment AT-
BSL with CUDA, referred to as AT-BSL-CUDA, and com-
pared it with the vanilla AT-BSL, as shown in the Table 19.
The results suggest that CUDA’s performance in adversarial

11https://github.com/sumyeongahn/cuda ltr

https://github.com/sumyeongahn/cuda_ltr


Table 12. The clean accuracy and robustness for various algorithms using ResNet-18 on CIFAR-100-LT. The best results are bolded.

Method Best Checkpoint Last Checkpoint

Clean FGSM PGD CW LSA AA Clean FGSM PGD CW LSA AA

AT [30] 41.20 17.42 14.59 14.51 16.49 13.62 41.44 17.21 13.89 14.17 16.40 13.10
TRADES [52] 38.12 19.60 17.89 15.96 15.91 15.59 38.71 19.43 17.27 15.83 15.87 15.28

MART [41] 38.46 23.04 21.36 18.59 18.36 17.51 39.58 22.38 20.51 18.40 18.42 17.27
AWP [44] 41.53 23.47 21.79 19.68 19.73 18.61 43.57 22.91 20.72 19.11 19.30 17.82

GAIRAT [53] 38.99 19.73 18.05 16.59 16.80 15.61 39.70 14.66 11.87 11.57 12.28 10.48
LAS-AT [19] 44.33 22.02 19.59 17.18 17.11 16.15 44.70 22.11 19.23 16.93 17.03 15.77

RoBal [45] 45.93 21.35 17.40 17.80 19.14 16.42 45.78 19.97 15.37 15.75 18.67 14.51
REAT [25] 46.28 21.55 18.85 18.07 18.95 16.54 45.99 19.62 16.29 16.04 18.22 14.79

AT-BSL 45.59 21.14 18.05 17.34 18.14 15.97 45.35 18.96 15.52 15.59 17.78 14.41
AT-BSL-AuA 48.39 25.81 22.96 20.73 21.30 18.90 50.66 25.89 22.43 20.62 21.43 18.79

Table 13. The clean accuracy and robustness for various algorithms using WideResNet-34-10 on CIFAR-100-LT. The best results are
bolded.

Method Best Checkpoint Last Checkpoint

Clean FGSM PGD CW LSA AA Clean FGSM PGD CW LSA AA

AT [30] 45.18 19.25 16.36 16.43 19.00 15.60 44.86 19.01 15.65 15.89 19.12 15.08
TRADES [52] 41.71 21.91 19.85 18.46 18.39 17.91 43.22 20.28 17.46 17.34 17.56 16.69

MART [41] 41.32 25.01 23.27 20.89 20.77 19.98 43.67 22.84 19.88 18.80 19.45 17.77
AWP [44] 45.66 25.89 23.88 21.87 22.10 20.56 48.18 24.75 21.81 20.30 21.19 18.67

GAIRAT [53] 36.41 18.87 17.31 16.07 16.13 14.77 45.11 19.49 16.31 15.85 16.71 14.75
LAS-AT[19] 45.86 23.30 20.02 18.67 18.79 17.35 46.54 22.84 19.65 18.18 18.38 17.01

RoBal [45] 50.08 23.04 18.84 19.30 21.87 17.90 46.34 19.99 15.17 15.87 20.06 14.77
REAT [25] 50.29 23.99 20.82 20.25 21.93 18.65 49.22 20.89 16.57 17.08 20.89 15.49

AT-BSL 50.04 23.37 19.66 19.60 21.66 18.04 48.56 20.88 16.83 17.09 20.13 15.76
AT-BSL-AuA 53.08 28.55 25.40 23.39 24.48 21.43 55.55 26.74 22.18 21.88 24.28 19.68

Table 14. The robustness for various algorithms with different
training epochs using PreActResNet-18 on Tiny-ImageNet-LT at
the best checkpoint. Better results are bolded.

Method Clean FGSM PGD CW LSA AA

AT 36.30 16.58 14.52 12.65 13.16 11.37

RoBal 36.27 13.66 10.98 10.18 9.84 8.98
AT-BSL 38.83 17.47 15.34 13.35 14.08 11.83

AT-BSL-RA 39.00 18.82 16.94 14.26 14.60 12.73

training under long-tailed distributions appears less effec-
tive than RA.
Data Augmentations Designed for Adversarial Train-
ing. DAJAT [1]12 proposes a data augmentation technique
designed explicitly for adversarial training. [1] initially
conceptualizes data augmentation as a domain generaliza-

12https://github.com/val-iisc/dajat

tion problem during training. Subsequently, they intro-
duce Diverse Augmentation-based Joint Adversarial Train-
ing (DAJAT). Since DAJAT’s experiments are based on
TRADES [52], it cannot be directly applied to augment
AT-BSL. We conduct comparative analyses between vanilla
TRADES and DAJAT. The comparison in Table 19 reveals
that DAJAT still contributes to improved robustness in long-
tailed adversarial training, showing comparable effective-
ness to TRADES-RA.

IDBH [27]13 is another data augmentation technique that
is specifically formulated for adversarial training. [27]
discovers that the diversity and hardness of data augmen-
tation play a crucial role in combating adversarial overfit-
ting. Then, [27] proposes a new augmentation scheme
called Improved Diversity and Balanced Hardness (IDBH).
We utilize IDBH to augment AT-BSL, referred to as AT-
BSL-IDBH. Upon comparison in Table 19, it is found that

13https://github.com/treelli/da-alone-improves-at

https://github.com/val-iisc/dajat
https://github.com/treelli/da-alone-improves-at


Table 15. The clean accuracy and robustness for various algo-
rithms using ResNet-18 on CIFAR-10-LT training with different
PGD steps. Better results are bolded.

Steps Method Clean FGSM PGD CW LSA AA

1 AT-BSL 77.15 23.15 12.05 13.06 24.80 11.27
AT-BSL-RA 82.16 28.28 14.25 15.34 26.30 13.21

3 AT-BSL 72.37 36.61 28.95 28.79 30.23 26.64
AT-BSL-RA 74.20 40.39 32.63 32.25 33.31 29.79

5 AT-BSL 68.62 39.11 33.67 32.47 32.62 30.49
AT-BSL-RA 69.39 41.86 36.81 34.33 33.89 32.62

7 AT-BSL 68.28 39.55 34.62 32.94 32.68 31.16
AT-BSL-RA 68.79 42.45 37.78 35.31 34.98 33.57

10 AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24

11 AT-BSL 67.89 39.78 35.21 33.15 33.20 31.57
AT-BSL-RA 68.46 42.10 37.63 34.58 34.26 33.12

13 AT-BSL 69.07 39.82 35.19 33.12 32.91 31.44
AT-BSL-RA 68.90 42.18 37.89 34.93 34.58 33.35

Table 16. The robustness for various algorithms with different
batch sizes using ResNet-18 on CIFAR-10-LT at the best check-
point. Better results are bolded. BS: Batch Size.

BS Method Clean FGSM PGD CW LSA AA

64 AT-BSL 67.82 41.42 36.57 34.41 34.22 32.67
AT-BSL-RA 66.70 41.85 37.87 35.34 34.83 33.78

128 AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24

256 AT-BSL 66.72 37.66 33.08 31.55 31.42 29.98
AT-BSL-RA 67.93 41.05 36.60 33.78 33.43 31.97

512 AT-BSL 60.01 35.45 32.27 29.44 29.02 28.15
AT-BSL-RA 63.25 37.66 34.38 31.14 30.59 29.53

Table 17. The robustness for various algorithms with different
training epochs using ResNet-18 on CIFAR-10-LT at the best
checkpoint. Better results are bolded.

Method Clean FGSM PGD CW LSA AA

AT-BSL-80 66.68 40.18 36.11 33.87 33.64 31.95
AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78

AT-BSL-RA-80 69.39 41.93 37.20 34.82 34.36 32.92
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24

IDBH’s effectiveness is less pronounced than RA on long-
tailed datasets.

Table 18. The robustness for various algorithms using ResNet-
18 on CIFAR-10-LT at the best checkpoint. The best results are
bolded.

Method Clean FGSM PGD CW LSA AA

RoBal 70.34 40.50 35.93 31.05 31.10 29.54
RoBal (retraining) 67.46 41.61 38.04 32.75 33.08 31.26

REAT 67.38 40.13 35.83 33.88 33.66 32.20
REAT (retraining) 67.38 39.51 35.15 33.53 33.31 31.77

AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24

Table 19. The robustness for various algorithms with different
data augmentations using ResNet-18 on CIFAR-10-LT at the best
checkpoint. The best results are bolded.

Method Clean FGSM PGD CW LSA AA

TRADES 43.61 29.18 27.81 26.73 26.58 26.41
DAJAT 42.04 29.34 27.70 26.47 26.36 26.27

TRADES-RA 44.45 29.18 27.61 26.51 26.47 26.27

AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78
AT-BSL-CUDA 68.05 40.06 36.48 33.07 32.75 31.49
AT-BSL-IDBH 70.80 39.54 33.30 32.56 33.01 31.24

AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24

Table 20. The robustness for various algorithms with different
training epochs using ResNet-18 on CIFAR-10-LT at the best
checkpoint. Better results are bolded.

Method Clean FGSM PGD CW LSA AA

AT-BSL 68.89 40.08 35.27 33.47 33.46 31.78
AT-BSL-RA 70.86 43.06 37.94 36.24 36.04 34.24
AT-BSL-DM 72.61 47.09 42.01 41.56 41.89 39.48

B.11. Using Data Generated by Diffusion Models

To investigate the potential of leveraging data generated by
diffusion models to improve the robustness of AT-BSL, we
train a diffusion model, DDPM, for CIFAR-10-LT, selecting
the version with the best Fréchet Inception Distance (FID)
of 6.92 after 18 sampling steps following [11, 21]. For
the generation of 1 million data points, we produce 100,000
images per class, culminating in a total of 1 million images.
Following [11], we set the proportion of unsupervised data
to 0.7 and train a ResNet-18 using AT-BSL, which we refer
to as AT-BSL-DM. The results presented in Table 20 clearly
demonstrate the significant improvement in robustness by
incorporating data generated by diffusion models.

B.12. Different Adversarial Training Methods

To further validate the hypothesis that data augmentation
alone improves robustness under long-tailed distributions,



we conduct experiments across various adversarial training
methods, employing AuA or RA. As evidenced in Table 21,
with few exceptions, data augmentation is beneficial for ro-
bustness. This effect is common on CIFAR-100-LT, likely
due to the reduced number of training examples per class in
this dataset, leading to a more substantial reliance on data
augmentation techniques.

B.13. Standard Deviation

We repeat AT-BSL and AT-BSL-RA five times using
ResNet-18 on CIFAR-10-LT. Their mean and standard devi-
ation of robustness under AA are 31.65± 0.45 and 34.12±
0.51, respectively. The relatively small variance indicates
the stability of our training process.

B.14. Computational Cost Comparison

In this section, we compare the computational costs of AT-
BSL and AT-BSL-RA/AuA regarding average training time
per epoch and GPU memory usage. The detailed results
are summarized in Table 22. The comparison indicates that
the introduction of data augmentation incurs a negligible
increase in time cost without imposing additional memory
overhead.

C. Comparison with Concurrent Works
Concurrently and independently from our work, REAT [25]
has also explored adversarial training under long-tailed dis-
tributions. [25] identifies that compared to conventional
adversarial training on balanced datasets, adversarial train-
ing under long-tailed distributions tends to produce imbal-
anced adversarial examples and feature embedding spaces.
To address this issue, [25] introduces a novel adversar-
ial training framework: Re-balancing Adversarial Training
(REAT). Notably, the experimental settings utilized in our
paper are fundamentally consistent with those employed in
REAT. Moreover, as shown in Tables 3, 4, 12, and 13, the
robustness achieved by our implemented vanilla AT-BSL is
comparable to that of REAT.



Table 21. The robustness for various algorithms with/without data augmentations at the best checkpoint. RA is employed on the combina-
tion of ResNet-18 and CIFAR-10-LT, whereas AuA is utilized for other model and dataset combinations. Better results are bolded.

Method
CIFAR-10-LT CIFAR-100-LT

ResNet-18 WideResNet-34-10 ResNet-18 WideResNet-34-10

Clean PGD AA Clean PGD AA Clean PGD AA Clean PGD AA

AT [30] 49.35 27.30 25.76 59.21 27.88 27.07 41.20 14.59 13.62 45.18 16.36 15.60
AT-RA/AuA 44.31 27.81 25.90 62.98 33.40 31.64 45.17 19.78 17.22 50.00 21.87 19.44

TRADES [52] 43.61 27.81 26.41 51.28 28.70 27.72 38.12 17.89 15.59 41.71 19.85 17.91
TRADES-RA/AuA 44.45 27.61 26.27 55.89 31.53 29.77 42.14 19.69 16.12 46.23 22.78 19.52

MART [41] 48.61 30.29 27.73 49.13 32.32 29.60 38.46 21.36 17.51 41.32 23.27 19.98
MART-RA/AuA 43.76 29.86 26.77 48.07 31.93 28.31 38.01 22.64 18.68 43.43 25.41 21.26

AWP [44] 49.29 31.20 29.53 50.91 31.85 30.06 41.53 21.79 18.61 45.66 23.88 20.56
AWP-RA/AuA 45.28 30.56 28.73 44.06 29.91 27.81 41.07 23.02 19.37 45.27 25.76 21.60

GAIRAT [53] 50.83 27.46 20.41 59.89 30.40 25.38 38.99 18.05 15.61 36.41 17.31 14.77
GAIRAT-RA/AuA 43.56 27.34 17.82 66.43 37.96 25.53 41.94 19.18 14.82 49.75 22.19 18.24

LAS-AT [19] 52.81 30.32 28.53 57.52 29.86 28.84 44.33 19.59 16.15 45.86 20.02 17.35
LAS-AT-RA/AuA 51.20 31.20 29.18 59.14 34.51 32.54 45.18 22.78 18.61 49.73 24.09 20.79

RoBal [45] 70.34 35.93 29.54 72.82 36.42 30.49 45.93 17.40 16.42 50.08 18.84 17.90
RoBal-RA/AuA 68.66 37.50 30.06 72.57 40.54 31.87 47.75 19.93 18.04 54.12 21.41 19.66

REAT [25] 67.38 35.83 32.20 73.16 35.94 33.20 46.28 18.85 16.54 50.29 20.82 18.65
REAT-RA/AuA 66.64 36.97 31.84 72.05 40.05 35.74 47.65 22.86 18.48 50.10 25.07 20.81

AT-BSL 68.89 35.27 31.78 73.19 35.60 32.80 45.59 18.05 15.97 50.04 19.66 18.04
AT-BSL-RA/AuA 70.86 37.94 34.24 75.17 40.84 37.15 48.39 22.96 18.90 53.08 25.40 21.43

Table 22. The time and memory for various algorithms. On the combination of ResNet-18 and CIFAR-10-LT, whereas AuA is utilized for
other model and dataset combinations. All experiments are run on NVIDIA RTX 3090.

Dataset Method ResNet-18 WideResNet-34-10

Time (s) Memory (MiB) Time (s) Memory (MiB)

CIFAR-10-LT AT-BSL 22.37 1345 200.70 4293
AT-BSL-RA/AuA 22.43 1345 201.42 4293

CIFAR-100-LT AT-BSL 30.94 1347 277.82 4293
AT-BSL-RA/AuA 31.25 1347 279.66 4293
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