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In the supplementary material, we provide a detailed ex-
planation of the ST-GT module and the data split.

8. Implementation details of ST-GT

In this section, we present a detailed implementation of con-
structing the input token of a spatiotemporal graph trans-
former in Section 3.2. Firstly, symbolic graph construction
to obtain G = {Gt}t=1,...,N , which is a sequence of snap-
shot graphs represented as Gt = (At, Xt, Et), is explained.
Then, a spatiotemporal graph tokenizing method to obtain
the input X for ST-GT is explained.

8.1. Spatiotemporal Symbolic Graph Construction

For the attribute matrix of the node Xt in snapshot graph
Gt = (At, Xt, Et), we concatenated shape, color, size, and
material features. Each word expressing the shape, color,
size, and material is transformed into 50-dimensional vec-
tors using the GloVe embedding method[25]. Based on the
distance between two objects, the edges of the snapshot
graph are defined. In Figure 6 (a), we consider two objects
to be connected by an edge if their distance is less than ED,
which we have set to 1.5. For the edge attribute Et, we con-
catenate the attributes of the connected nodes. Finally, the
adjacency matrix At is calculated using the edges.

8.2. Spatiotemporal Graph Tokenization

The input data for the ST-GT (Spatio-Temporal Graph
Transformer) model, denoted by X, consists of three to-
ken types. As shown in Figure 6 (b), each token is added
with three types of information: feature, positional embed-
dings, and token type identifier. In our model, when dealing
with the spatial edge type token and the temporal edge type
token, we concatenate their feature vectors and positional
embeddings with those of the connected node type tokens.
To extract a 128-dimensional time feature vector for each
object, we use the time mapping function denoted as ft in
Figure 3, which was introduced in TGAT [39]. For the pose
feature, we use the 6 degrees of freedom (6 DoF) informa-
tion to obtain a 12D pose vector containing a specific ob-
ject’s 3D global position and local coordinate information.
Eigenvectors of graph laplacian L

total are used as positional
embeddings where L

total is calculated from A
total defined in

Section 3.1.

9. Detailed explanation on the Compositional

Generalization Test for Composite Action

Recognition Dataset

In this section, we provide a more detailed explanation of
the conditions used to divide the label set for Task 2 in Sec-
tion 4.2.2. The label set for Task 2 has been divided into
three cases, each of which is subject to different temporal
relationships. The temporal relationships for each case are
as follows.
Before or After relationship A randomly selected label X

before Y, where X 6= Y , is defined as an element in LA,
then the opposite label Y before X is defined as the element
in LB . This condition can be expressed mathematically as
follows:

‘X before Y’ 2 LA () ‘Y before X’ 2 LB . (4)

The same principle holds for the after relationship.
During relationship A randomly selected label A1 during

A2, where A1 6= A2, is defined as an element in LA, then
B1 during B2, where B1 6= B2, is defined the element in
LB . In this case, LA and LB satisfy the following condi-
tions:

8‘A1 during A2’ 2 LA, 9‘B1 during B2’ 2 LB

s.t. |{A1, A2} \ {B1, B2}| = 1.
(5)

In other words, only one of the two actions in any label
included in LA paired with a label in LB is the same.
Same action labels If any temporal label between identical
actions is included in LA, the corresponding label in LB

also represents a temporal label between identical actions.
An element in LA is defined as (X, t,X), then the element
in LB is defined as (Y, t, Y ), where t is an element of the set
of total temporal relation type, and X 6= Y . When dividing
LA and LB , we approached it by considering each action
with object and action types as in Task 1. Therefore, if we
express two actions X and Y with object and action types,
we have X = (oX , aX) and Y = (oY , aY ). Here, oX , oY 2
S, and aX , aY 2 A, where S and A represent the sets of
total object and action types. In this context, LA and LB

satisfy the following conditions:

8((oX , aX), t, (oX , aX)) 2 LA,

9((oY , aY ), t, (oY , aY )) 2 LB

s.t. (oX = oY ) _ (aX = aY ).

(6)

In other words, the temporal relation type between the ele-
ments in LA and LB is the same, and the two actions X and



Y share only one of an object or action type. As LA and LB

are disjoint sets, X 6= Y is implied.
According to the defined LA and LB , it holds that LC =

Ac � (LA [LB), where Ac represents the set of total com-
posite actions. Ultimately, the conditions |LA| = |LB | =
98 and |LC | = 105 are satisfied. The labels provided in
the CATER dataset for Task 2 include seven labels that are
part of the Task 2 labels but have never appeared in the
CATER dataset videos. Consequently, these seven labels are
included in LC . Therefore, LC contains seven more labels
than LA and LB . Details about these seven labels can be
found in [10].

10. Implementation details of MOMA-LRG

dataset experiments

As alluded to in section5.4, we conducted experiments on
a multi-label classification problem (subactivity level clas-
sification) using the MOMA-LRG dataset. As the MOMA-
LRG dataset provides a frame-level symbolic graph, we de-
fined the object and actor as nodes and the relation between
nodes as edges. We used sentence-bert[26] for nodes and
edges as our input feature. For the formulation of the multi-
label classification problem, we excluded videos without
sub-activity and those with an excessive number of objects,
that exceeded the model’s input token limit (e.g., basketball-
playing videos). Therefore, the number of videos for train,
valid, and test sets is 757 / 182 / 227.

11. Qualitative for unseen types of videos

We examined how our model makes predictions for entirely
unseen types of videos. As discussed in Section 4.1, Task
1 of the CATER dataset contains only 14 labels among 20
possible combinations(5 types of object and 4 types of ac-
tion), due to certain actions not being applicable to spe-
cific objects (for example cone rotate, cube contain). For
the zero-shot compositional generalization setting, we syn-
thesized new videos corresponding to cone rotate, cube con-

tain labels(Figure 7 (a)-(b)). In Figure 7 (c), the embeddings
for two synthesized objects are plotted with other embed-
dings. From this Figure, we can observe that embeddings
for objects never seen before are located in proximity to em-
beddings that possess similar semantic units, despite never
having been trained together. Based on these analyses, we
anticipate that the proposed model will exhibit robust per-
formance even in zero-shot settings.



Figure 6. (a) Details of Symbolic Graph Construction. At the timestamp t � 1, when the distance between the red sphere and the green
cylinder is less than ED(1.5), two objects are connected with an edge as shown in Gt�1. These edges enable the identification of action
patterns related to both objects, such as contain. (b) Example of Spatiotemporal Graph Tokenization. Calculating graph laplacian when
N = 3 and n = 3. Positional embeddings are composed with the eigenvectors from the total adjacency matrix which is denoted as Atotal 2
R9⇥9. (c) Details of Embedding Disentangling Module. As mentioned in the main paper, we defined three semantic elements (action,
object, temporal relation) and obtained corresponding semantic element annotations. For two of these(action, object), the object-oriented
representations incoming into the embedding disentangling module are supervised by two classifiers. On the other hand, embeddings for
the relationship between two atomic actions are required for temporal relations. Therefore, we first retrieved embeddings corresponding to
the predicted semantic elements from the two classifiers and concatenated them to obtain embeddings for each atomic action. Subsequently,
we introduced a permutation process to obtain embeddings for the relationships between atomic actions, and trained temporal relations
using another classifier.



Figure 7. Embeddings with unseen composite labels. (a) and
(b) show generated videos containing unseen labels cube con-

tain(green box), cone rotate(yellow box) respectively. (c) demon-
strates how the embeddings for cube contain(green box) are po-
sitioned between the representations of cubes (square data points)
and contain (red data points). Also, the embeddings for cone ro-

tate (yellow box) are located between the representations of cone

(triangle data points) and rotate (green data points). This illustrates
the model’s ability to accurately predict outcomes for entirely un-
seen labels by combining known features.


