
SHViT: Single-Head Vision Transformer with Memory Efficient Macro Design
—— Supplementary Material ——

This supplementary material presents additional compar-
ison results, memory analysis, detection results, and exper-
imental settings.

A. Comparison with Tiny Variants of Large-
scale Models

We compare our model against tiny variants of estab-
lished models in Tab. 1. Our model, when applied to higher
resolutions, outperforms state-of-the-art models in terms of
parameter and throughput. Compared to Swin-T [11], our
SHViT-S4r384 is 0.3% inferior in accuracy but is 2.3× /
9.5× faster on the A100 GPU / Intel CPU.

In Fig. 1, we also provide further results of Section 3.2. It
demonstrates improved speed performance when increasing
the resolution not only on mobile devices but also on other
inference platforms compared to the recent models [8, 20].
This result showcases that our model can be a competitive
alternative in real-world applications. Further analysis of
these performance enhancements will be detailed in the fol-
lowing section.

B. Memory Efficiency Analysis

Our model has a larger number of parameters compared
to lightweight models. For instance, SHViT-S3 has 2.7×
more parameters compared to EfficientNet-B0 [17]. How-
ever, an important consideration for deploying the model
on resource-constrained devices is the memory access cost
of the feature maps. On an I/O bound devices, the number
of memory access for a given layer is as follows

2× b× h× w × c+ k2 × c2 (1)

Particularly, when increasing batch size to enhance through-
put, or for applications that require high-resolution input,
the impact of the first term in the above equation becomes
significantly more critical. Our proposed macro and micro
designs considerably reduce memory usage by eliminating
redundancies in the first term’s h × w and c components,
respectively. In Tab. 2, our model, despite having more pa-
rameters than EfficientNet-B0, consumes less test memory.
Notably, the disparity in memory usage grows with increas-
ing batch sizes.

C. Further Results on COCO Detection

We also present results on COCO object detection
benchmark [9] with DEtection TRansformer (DETR) [2,23]
framework in Tab. 3. The encoder of DETR consists of

Model
Params FLOPs Throughput (image/s) Top-1

(M) (G) GPU CPUONNX (%)
CaiT-XXS36 [19] 17 3.8 1394 24 79.1
Twins-PCPVT-S [4] 24 3.8 3800 53 81.2
Swin-T [11] 28 4.5 2868 33 81.3
TNT-S [7] 24 5.2 1554 37 81.5
CoAtNet-0 [5] 25 4.2 2448 53 81.6
DeiT-B [18] 87 17.6 3227 21 81.8
XCiT-S12 [1] 26 4.8 3110 - 82.0
PVTv2-B2 [21] 25 4.0 2924 14 82.0
FocalNet-T [22] 28 4.4 2808 68 82.1
ConvNeXt-T [12] 29 4.5 3325 49 82.1
SHViT-S4 17 1.0 14283 509 79.4
SHViT-S4r384 17 2.2 6702 315 81.0
SHViT-S4r512 17 4.0 3957 198 82.0

Table 1. Comparison with the tiny variants of state-of-the-art large-
scale models on ImageNet-1K classification. ‘r384’ means fine-
tuned at 384×384 resolution. Models which could not be reliably
converted to ONNX format are annotated by ‘−’.
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Figure 1. GPU, CPU latency comparison of a SHViT-S4 with re-
cent state-of-the-art FastViT [20] and EfficientFormer [8]; mea-
sured on A100 GPU, Intel CPU for various image resolutions.

Model
Top-1 Params Inference Memory (MB) / Throughput (images/s)

(%) (M) bs1 bs32 bs256 bs1024

SHViT-S3 77.4 14.2 1855 / 147 1963 / 4691 2613 / 20522 5525 / 22309

EfficientNet-B0 77.1 5.3 1931 / 175 2015 / 5427 3861 / 8433 10493 / 8706

Table 2. Memory Consumption Comparison with EfficientNet-
B0 [17]. ‘bs32’ indicates that test time memory consumption and
throughput are measured at batch size of 32.

self-attention and FFN, and the decoder consists of self-
attention, cross-attention, and FFN. To demonstrate the ef-
ficacy of our single-head attention module not only as a fea-
ture extractor but also as a detection head, we apply single-
head design to the encdoer’s self-attention and decoder’s
cross-attention layers. These two layers involve significant
computational costs, thus employing a single-head design
can greatly enhance the model speed. However, in the de-
tection head, each of the attention weights localizes differ-
ent extremities [14], making it challenging to simply com-



Method Params FPS AP AP50 AP75 APS APM APL

Deformable DETR w/ single-head 37.1M 31.4 (24% ↑) 43.1 62.7 46.6 26.3 46.6 57.2

Deformable DETR 40.0M 25.4 43.8 62.6 47.7 26.4 47.1 58.0

Table 3. Effectiveness of our Single-Head Attention module with
Deformable DETR [23] framework. Our method improves test
speed by 24% without significant performance degradation.

bine them into a single-head design. Furthermore, we find
that the multi-head design in both the initial layer and lat-
ter layers of the encoder/decoder is vital. Thus, we employ
single-head attention modules in the 2nd, 3rd, and 4th layers
of each encoder/decoder. To minimize performance degra-
dation, we also increase the head dimension in the single-
head module from 32 to 64. We train our model using the
training recipe of Deformable DETR [2, 23]. As shown in
Tab. 3, single-head module demonstrates reasonable perfor-
mance as a detector head and is a competitive alternative for
applications where inference speed is crucial.

D. More Details on Redundancy Experiments
In this section, we provide implementation details of sec-

tion 2.2.
head similarity analysis. For each layer i, the average co-
sine similarity value is computed as:

HeadSimi =
1

Nh(Nh − 1)

∑
j ̸=k

cos(headj , headk) (2)

where Nh is the number of heads. Then, the value is aver-
aged for all batches.
head ablation study. In order to perform head ablation
experiments, we modify the formula for Multi-Head Self-
Attention (MHSA):

MHSA = Concat(δ1head1, ..., δNheadN )WO, (3)

headi = Attention(XiW
Q
i ,XiW

K
i ,XiW

V
i ), (4)

Attention(q,k, v) = Softmax(qkT/
√

dhead)v, (5)

where the δ are mask vaiables with values in {0, 1}. When
all δ are equal to 1, the above layer is equivalent to the
MHSA layer. In order to ablate head i, we simply set δi = 0.
We conduct experiments by selectively removing one or
more attention heads from a given architecture during test
time and assessing the resulting impact on accuracy. And we
report the best accuracy for each layer in the model, i.e. the
accuracy achieved by reducing the entire layer to the single
most important head.

We further investigate head redundancy in DeiT-S-
Distill [18], a vision transformer distilled with knowledge
from ConvNets. In the distilled model, we can also observe
a significant computational redundancy among many heads
in the latter stages. Additionally, in the early stages, where

DeiT-S-Distill
      81.17%

Figure 2. Head ablation study on DeiT-Small-Distill [18].

many heads operate similarly to convolution, there is a rel-
atively substantial decline in performance.

E. Further Discussions on Related Works

About Macro Design. Our patch embedding scheme is
similar to that of [6, 10], but the derivation process takes
place from a completely different perspective. While [6] in-
directly determines the patch embedding size through ex-
periment grafting ResNet and DeiT, our work, on the other
hand, investigate redundancy from the beginning, analyz-
ing it separately in terms of spatial and channel. This allows
us to address not only the spatial redundancy in traditional
patch embedding but also propose a SHSA module, in con-
trast to [6] which employs MHSA (at mobile, SHViT-S4
80.2%/1.6ms vs. LeViT-192 80.0%/28.0ms). To the best of
our knowledge, none of existing works have analyzed the
effects (speed, memory efficiency) of resolving spatial re-
dundancy in diverse environments (devices, tasks).
About Partial Design in SHSA. Partial channel design
has also been employed in previous research [3, 13]. How-
ever, our work is distinct in both motivation and effec-
tiveness. While prior work primarily focused on FLOPs
(or throughput) and so employs convolutions (either depth-
wise or vanilla) on partial channels, this paper addresses
multi-head redundancy by employing attention with single-
head on partial channels. Furthermore, our SHSA, with
preceding convolution, memory-efficiently leverages two
complementary features in parallel within a single token
mixer [15, 16].

References
[1] Alaaeldin Ali, Hugo Touvron, Mathilde Caron, Piotr Bo-

janowski, Matthijs Douze, Armand Joulin, Ivan Laptev, Na-
talia Neverova, Gabriel Synnaeve, Jakob Verbeek, et al. Xcit:
Cross-covariance image transformers. Advances in neural
information processing systems, 34:20014–20027, 2021. 1



[2] Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas
Usunier, Alexander Kirillov, and Sergey Zagoruyko. End-to-
end object detection with transformers. In European confer-
ence on computer vision, pages 213–229. Springer, 2020. 1,
2

[3] Jierun Chen, Shiu-hong Kao, Hao He, Weipeng Zhuo, Song
Wen, Chul-Ho Lee, and S.-H. Gary Chan. Run, don’t walk:
Chasing higher flops for faster neural networks. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12021–12031, June
2023. 2

[4] Xiangxiang Chu, Zhi Tian, Yuqing Wang, Bo Zhang, Haib-
ing Ren, Xiaolin Wei, Huaxia Xia, and Chunhua Shen.
Twins: Revisiting the design of spatial attention in vision
transformers. Advances in Neural Information Processing
Systems, 34:9355–9366, 2021. 1

[5] Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan.
Coatnet: Marrying convolution and attention for all data
sizes. Advances in neural information processing systems,
34:3965–3977, 2021. 1

[6] Benjamin Graham, Alaaeldin El-Nouby, Hugo Touvron,
Pierre Stock, Armand Joulin, Hervé Jégou, and Matthijs
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