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1. Introduction

The main manuscript presents a novel approach for proba-
bilistic clustering based on exploiting the probabilistic na-
ture of adiabatic quantum computing (AQC). In the sup-
plementary material, we provide additional details and
that complement the main manuscript. Section 2 presents
the detailed derivation of the energy function used in the
manuscript. Section 3 discusses the optimization of the
inference parameters to increase the AQC solver perfor-
mance. Section 4 provides information on data generation
for the synthetic and real-world datasets used in the exper-
iments. Sections 5, 6 and 7 extend the clustering perfor-
mance and calibration evaluation on synthetic data and the
IRIS dataset respectively. In Section 8, we discuss failure
cases encountered during the experiments. Finally, we out-
line the limitations of our approach in Section 9.

Overall, the supplementary material aims to clarify open
questions from the main manuscript, provides additional in-
sights into the proposed method and discusses its current
limitations.

2. Energy Function Derivation

The following section shows the step-by-step derivation of
the energy function used in this paper. As clusters are inde-
pendent, the energy for each cluster can be computed sep-
arately F(X|Z) = ), Ex(X|Z), where X represents the
data-points and Z is the assignment matrix with entry Zy;
assigning point x; to cluster c;. For a single cluster cg, the
energy can be further extended into the quadratic and linear
terms as follows

Tolga Birdal Luc Van Gool
Imperial College ETH Zurich
London INSAIT, Sofia University
Sofia, Bulgaria
Ey(X|Z) = ZZkz — ) TI(3x; — puge)

= Z Zri(x]Ix; — 2x] Ly, + ,u,zI,uk)
. ; ; (1)
= Z Zyix Ix; — 2 Z Ziixi Lug + Z Zipg Lk

= Z Ziix]Ix; — 2 Z Zrix Ty + sepf L,

% %

with the cluster mean py and identity matrix I. By using the
maximum likelihood (ML) estimator of the cluster mean
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with cluster size sy, the energy formulation only depends
on the data and the cluster assignment
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This finally shows that the total energy only depends on the
distance between each pair of points
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3. Inference Parameter Optimization

Using the quadratic penalty method to include constraints
in the Quadratic Binary Optimization (QUBO) formulation
requires finding suitable Lagrangian multipliers A. Even
though a very high multiplier theoretically guarantees to
find a feasible solution, it also deteriorates the condition-
ing of the optimization problem. Therefore, a suitable La-
grangian multiplier lifts the cost of any constraint violation
above all relevant solutions of the clustering problem, while
keeping them low enough to avoid scaling the total energy
of the problem up considerably. To estimate the multipliers
for each constraint, we follow an iterative procedure.

In an initial step, balanced k-means[2] is used to find a
feasible clustering solution. This is used to offset the dis-
tance terms for each point such that the total clustering so-
lution has an energy of 0. For the next steps, the constraints
are separated into 3 components:

The cluster size constraint is defined by ZZ I =
sk Vk. Due to its strong diagonal term in its quadratic form
using Lagrange multipliers, it quickly degrades the energy
scaling of the problem. The Lagrangian multiplier corre-
sponding to this constraint is estimated from the maximum
cost improvement that can be achieved by switching one
point between clusters.

The constraint & Zki = 1 Vi, which ensures the match-
ing of every point to exactly one cluster, is further seg-
mented into two parts. One part contains the positive off-
diagonal elements and penalizes assigning a single point
to multiple clusters. Its corresponding Lagrangian is com-
puted from the maximum cost improvement that can be
achieved by assigning an additional point to any cluster,
compared to the k-means solution. The other term contains
negative diagonal elements and adds an incentive to assign
every point to one cluster. The corresponding multiplier is
estimated by the maximum cost improvement by removing
one point from a cluster and thus violating the constraint.

In five subsequent optimization steps the clustering prob-
lem is solved using simulated annealing and the Lagrangian
multipliers are increased for constraints that are not ful-
filled.

In the last step, which is only performed for simulated
annealing, measurements at low temperatures of the Boltz-
mann distribution are handled. In scenarios where only a
single valid clustering solution is returned, the Lagrangian
multiplier of the cluster size constraint is increased, which
results in sampling the problem at a higher temperature.

Finding well-suited Lagrangian multipliers is crucial due
to the low fidelity of the current generation of AQCs, which
requires careful engineering of the problem energy. There-
fore, we expect this procedure to become of reduced impor-
tance in future generations of lower noise AQCs.

For experiments performed on the D-Wave AQC, all La-
grangian optimization steps are performed with SIM, before
measuring the final results on the AQC due to the strong
compute-time limitations.

4. Data Generation

Synthetic Data is generated by sampling a total of I points
from separate normal distributions for each of K clusters.
The cluster centers are selected as the corners of a simplex
with uniformly drawn edge length, such that the distance
between each pair of clusters lies within a predefined range
[dmin, dmax ] The feature-space needs to be at least K — 1 di-
mensional for each clustering problem. Sampling the edge-
length randomly allows to generate a wide range of cluster-
ing problems with a different degree of ambiguity, due to
the changing degree of overlap between distributions. This
allows to evaluate the whole range of predicted posterior
probability values. For each experiment a total of L cluster-
ing tasks is generated to evaluate the clustering metrics.

IRIS [1] is subsampled to generate quantitative results over
different clustering scenarios. The whole IRIS dataset con-
tains 3 classes, 50 samples for each class and 4 features
forming a 4-dimensional space. According to the exper-
iment parameters we randomly select a subset of classes,
samples and features without replacement to allow running
the tasks on a D-wave AQC. This generates different clus-
tering problems, while keeping the general structure of the
data in IRIS.

Image data is used to demonstrate the applicability of our
method to computer vision tasks. We collected 8 images
each for cars and boats and two images of cars towing boats.
Visual embeddings for each image are extracted after the
last layer of VGG16 [3] pretrained on Imagenet. Subse-
quently, the high-dimensional features are clustered using
our approach, and the first coreset is computed to identify
the ambiguous samples as demonstrated in the main paper.
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(a) 3 clusters, 30 points. (b) 3 clusters, 45 points.

Figure 1. Evaluation of the calibration for simulated annealing in
clustering scenarios with 3 clusters and 30/45 points respectively.
All results generated with 1,000 problems in each scenario and
20,000 measurements for each clustering problem.

5. Cluster Calibration Evaluation

This section extends the analysis of the calibration of our
method to additional synthetic scenarios with more vari-
ation and increased problem size. The plots provided in
this section are generated similarly to the main manuscript
where first all clustering solutions Z are accumulated
in bins according to their estimated posterior probability
P(Z|X), including all sampled but non-optimal solutions.
After accumulation, the ratio of correct solutions in each
bin is evaluated and plotted over the probability range of
each bin. In the plots the diagonal represents the desired
calibration.

Further calibration plots for the scenario with 3 clusters
and an increasing number of total points are provided in
Figure 1. The scenarios are solved using simulated anneal-
ing with 20,000 measurements for each problem. The ex-
periment with a total of 45 points in Figure 1b shows an
overestimation of the posterior probability of the respective
solutions. This can be attributed to two possible scenar-
i0s, where 1) the best solution is found, but not all relevant
high-energy solutions are found during annealing and 2) the
lowest-energy solution is not found and thus, the probabil-
ity of all other solutions is overestimated. As the optimiza-
tion problem becomes harder with an increasing number of
points, the behavior is stronger in Figure 1b than in Fig-
ure la.

6. Coreset Sparsification Performance

The set of feasible solutions can be merged by using the cal-
ibrated confidence scores in Algorithm 1 introduced in the
main manuscript. It sequentially removes uncertain points
from the solution thus, increasing the solution probability.
In Figure 2, we show the probability of the best merged so-
lution being correctly evaluated over the minimum solution
probability of the sparsified coreset. It shows that our ap-
proach of removing single points can considerably increase
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Figure 2. Clustering accuracy wrt. removing uncertain points by
merging coresets.

the solution probability, thus highlighting the quality of the
found coresets.

7. Evaluation on IRIS

Table 2 in the main manuscript provides performance
metrics for randomly subsampled versions of the IRIS
dataset [1]. In this section, we further evaluate the perfor-
mance on the whole IRIS dataset, which contains 3 classes,
50 samples for each class and 4 features. We use simu-
lated annealing with 20,000 measurements and balanced k-
means to solve the IRIS clustering task, which both pro-
vide the same solution. The qualitative results are de-
picted in Figure 3, where all pairs of features are visual-
ized. The shape of each sample represents the ground truth
class and the color the result of the clustering algorithm.
While the different feature pairs are plotted separately, the
problem is solved as a single 4-dimensional clustering task.
As results are identical with simulated annealing and bal-
anced k-means, clustering metrics are also identical with a
Completeness of 77.7%, Adjusted Rand index 78.6% and
Fowlkes-Mallows Score of 85.6%.

8. Failure Cases

Analyzing the failure cases of our method provides valu-
able insight into the current state of quantum computing in
computer vision, which aids to identify areas that need to
be further investigated.

8.1. K-means

The analysis of synthetic problems in Table 1 in the main
manuscript shows an advantage of our approach compared
to the balanced k-means algorithm [2] for the smaller clus-
tering scenarios. These cases can be traced back to the
k-means algorithm finding local minima where switching
points given the last cluster means does not improve the
data fit. This scenario is avoided in our formulation by
jointly optimizing for the assignment and cluster centers.
Two examples of such failure cases of k-means clustering
are provided in Figure 4.
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Figure 3. Clustering results on the IRIS dataset for simulated annealing and k-means.

8.1.1 Annealing based clustering

The scenario with a total of 45 Points in 3 Clusters shows
an advantage of k-means in the number of correctly solved
problems compared to our approach using simulated an-
nealing. The main source for this behavior lies in not find-
ing the lowest energy and thus, the optimal solution of the
clustering problem, as depicted in Figures 5a and 5b. An-
other source of error in this scenario is shown if Figures 5c
and 5d, where the local k-means solution corresponds to
the ground truth, even though it has a higher energy. As the
solutions returned by our approach are still dense clusters,
the clustering metrics remain competitive with the balanced
k-means approach.

9. Limitations

Our work aims at demonstrating the potential of using a
quantum computer as a sampler for k-means clustering, in
order to find multiple likely solutions and their associated
calibrated posterior probabilities. Given the novelty of ap-
plying quantum computing to computer vision, it’s natural

that many works in this area, including ours, still come with
limitations.

Current quantum computers are still limited in their fi-
delity of qubit couplings, which represent the terms of the
quadratic cost function. This requires a careful selection
of Lagrangian multipliers, which adds additional compu-
tational cost in the current formulation. With improving
AQCs, this problem can be reduced and help to increase the
problem size, as well as the robustness of the formulation.
Another hardware limitation is the restricted connectivity
between qubits. In the D-Wave Advantage 2 prototype used
in this work, each qubit is coupled to up to 20 neighbors.
This requires to build chains of qubits to represent a dense
cost-matrix. Therefore, investigating sparse representations
for clustering that reduce the required chain length can help
to embed larger problems on the AQC.

Finally, our clustering approach is following the k-means
cost function, with an identity covariance matrix. While this
can model a range of practical problems, where the distri-
bution of the data can directly be influenced, future work
should investigate formulations of higher-order terms.
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Figure 4. Failure cases for k-means clustering. While our formu-
lation finds the correct solution, k-means returns a local minimum.
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Figure 5. Failure cases for simulated annealing clustering.
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