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6. Supplementary Material
We provide here an ablation of SUE by changing the back-
bone and the weight function. A probabilistic interpretation
of SUE is then presented and later used to perform density
compensation for dissimilarly distributed query and refer-
ence images. We further provide the precision-recall curves
for the remainder five VPR datasets. The complementar-
ity of SUE, STUN, and L2-distance to GV is also shown on
these datasets. We also show these complementarity plots of
other techniques with SUE. Then, we connect the concept
of geometric burstiness [40] with SUE. Finally, some qual-
itative results are shown in the form of correctly/incorrectly
matched queries ranked with different types of uncertainty
estimates.

6.1. More ablation studies of SUE

We perform two further experiments: changing the back-
bone feature extractor from STUN [9] to CosPlace [6] to
show SUE’s generality to other backbones in Fig. 8, and the
benefit of using the exponential weighing function (in Equa-
tion (2) of the main paper) instead of the uniform weighing,
as reported in Table 4.

Weigh. Pitts. San. Stlu. Eyn. MSLS Avg
Uniform 0.81 0.77 0.67 0.77 0.49 0.70
SUE 0.94 0.84 0.88 0.93 0.77 0.87

Table 4. SUE weighs the contribution of the nearest neighbor
poses based on the distance in the feature space with an expo-
nentially decaying function. This performs better than uniform
weighing of the variance of the reference poses.

6.2. A probabilistic view of SUE

We here present a probabilistic view of SUE, which will
help formulate a modified version in Section 6.3 to account

for different spatial distributions of queries and references.
Consider M ∈ {1, · · · , N} as a stochastic ‘match’ vari-

able that indicates which of the N references is a true refer-
ence. So, M = i would mean reference i is the ‘true’ match
for the query. Then p(M = i) expresses the prior belief that
any reference i could be the true reference.

Assuming that some reference i is the true reference,
M = i, then the observed query feature fq can be ex-
pected to be similar to the reference feature fi, with some
homoscedastic Gaussian noise or variation added to all fea-
ture dimensions,

p(fq|M = i) = N(fq|f(i),Σf ) (4)

∝ e−λ·||fq−f(i)||2 (5)
∝ w(i). (6)

So, the weight term of Equation (3) can be considered as
the non-normalized likelihood term. Note that the hyperpa-
rameter λ subsumes the noise parameter Σf .

Through Bayes’ rule, we can express the posterior belief
over M given the query feature as

p(M |fq) =
p(fq|M)p(M)

p(fq)
=

p(fq|M)p(M)∑
j p(fq|M = j)p(M = j)

.

(7)

With a uniform prior (p(M) = 1/N ) that indicates equal
probability for all references, we can see that the posterior
reduces to p(M |fq) = w(i)/

∑
j w(j), since the constant of

the prior factors out in the numerator and denominator.
If we now assume that our VPR technique is reasonable,

and that the query position should be located at the ‘true’
reference, then we can express the expected query position,
given our belief on the match of each reference, i.e.,

E[p(M)|fq] =
∑
i

[
p(M = i|fq)p(i)

]
(8)

= µp (9)



Figure 8. SUE remains SOTA by changing the backbone feature extractor to CosPlace [6] with no retuning of SUE’s hyper-parameters.
CosPlace is also used as the backbone for L2-distance and PA-score, but it was not possible to change the backbone for BTL and STUN.

Here we recognise Equation (1), assuming the uniform prior
p(M). While we do not necessarily consider this expected
pose to be representative of the true query pose (it could
be an average location between distant visually-matching
areas), it does allow us to compute the expected squared
pose distance of the true match to the query,

E
[
||p(M) − µp||2

∣∣∣∣fq] ≈ trace(Σp) = sq, (10)

where Σp is as defined in Equation (2) for the uniform prior
p(M). In other words, in SUE sq estimates the expected
(squared) distance between the match’s pose and the query
pose, thus the smaller sq the higher the chance is that a
match selected according to our posterior belief is within
an acceptable distance to the true query pose.

Finally, reference i′ = argmaxi p(M = i|fq) with the
highest posterior probability of being the correct match is
selected, which based on the likelihood term (and with uni-
form prior) will be i′ = 1, i.e. the nearest neighbor in the
feature space.

Note that in the above, a uniform prior p(M) means all
references are assumed a-priori equally likely to match the
query. In case some areas in the map contain more refer-
ences than other areas, this also implies a higher prior belief
that the query will occur in such a denser sampled area. This
‘default’ prior is therefore not a uniform spatial prior over
the mapped area, but it assumes that the local spatial density
of references in the map is indicative of the probability of a
query appearing in such a local region.

6.3. Spatial density compensation for dissimilar
query/reference spatial distributions

As explained in SUE’s potential limitations of Discussion
Section 4.5 and Appendix Section 6.2, the default formula-
tion of SUE assumes that each reference is equally probable

to match a query, i.e., a uniform prior p(M) is assumed. In
other words, the query and reference images/poses are ex-
pected to be distributed similarly over the map, and the spa-
tial density of the references in an area reflects the assumed
prior probability for a query to be located in that area.

To illustrate, consider two perceptually-aliased locations
A and B, where location A is represented by 100 images and
location B by one image. If a query occurs at A or B, SUE’s
uncertainty estimate as currently formulated in Equation (2)
will be low, since the many references at location A will all
agree on low spatial variance, while the contribution of dis-
tant references at location B are 100× less. This high con-
fidence could be desired if location A is also 100× more
likely to be visited at query-time than location B (i.e. the
uniform p(M) holds, so the spatial density of the references
reflects a spatial prior of a query’s location). However, this
prior could also be undesired if we expect queries at A and
B are equally likely to occur, irrespective of the reference
density. Ultimately, what is desired depends on the applica-
tion and data collection procedure.

In case the uniform prior p(M) over references is unde-
sired, we can substitute it with a different prior in the equa-
tions of Section 6.2. Specifically, in Equation (7) the like-
lihood terms should not be multiplied with a constant prior
term (which cancelled out in the numerator and denomina-
tor). Still, it may be more convenient to express the prior
over references in terms of a spatial prior for the query. In
other words, a reference would be more probable to match
if it is in a area where the query is more probable to occur,
while a reference would be less probable if there are more
other references in the same spatial area. Let pq(p) denote
the desired spatial prior for the query to be at a pose p, and
pr(p) denote the spatial density of the references at a pose



(a) Pittsburgh query (b) Pittsburgh reference

(c) Stlucia query (d) Stlucia reference

Figure 9. The density of queries and references is depicted using
the distance (z) of each query/ref to its nearest neighbour (k = 1)
in the pose space. Queries and references in Pittsburgh dataset
are highly dense and hence uniformly spatially distributed. The
queries and references are non-uniformly (albeit similarly) spa-
tially distributed in the sparser Stlucia dataset.

p, then

p(M = i) ∝
pq(p(i))

pr(p(i))
. (11)

We will refer to this as spatial density compensation. In
practice, we can thus compensate SUE for a desired spa-
tial prior by multiplying the reference weight w(i) with a
term (proportional to) the desired prior p(M). Note from
Equation (11) that if the spatial distributions of queries and
references are assumed equal, we again obtain that p(M) is
uniform, as is the case for the default SUE formulation.

6.4. Validating spatial density compensation

In this section, we test the spatial density compensation con-
cept of adjusting SUE as explained in Section 6.3.

Applying a uniform spatial prior for the query Let’s
assume the spatial density of query poses is uniform, so all
query poses within the map are equally likely, in which case
term pq(p) becomes a constant (and thus will cancel out
when normalizing the weights).

The spatial density of the references pr(p) can be esti-
mated from the finite samples of poses in the reference set.
We can for instance model the spatial density of references
by simply taking the distance z(i) of the reference i to its k-
th nearest neighbor in the pose space, such that the area z2(i)
is inversely proportional to the local density of the reference
i, i.e., pr(p(i)) ∝ 1/z2(i). Hyperparameter k regularizes the
smoothness of the estimated reference pose density.

Compensation Pitts. San. Stlu. Eyns. MSLS
none 0.94 0.84 0.89 0.93 0.76
k = 1 0.94 0.84 0.82 0.93 0.76
k = 3 0.94 0.84 0.84 0.93 0.77
k = 10 0.94 0.81 0.85 0.92 0.77

Table 5. SUE’s AUC-PR with reference density compensation.

We can now see that p(M = i) ∝ z2(i), thus the density
compensated SUE for this uniform spatial prior for query
poses is obtained by re-weighing Equation (3) with z2(i), i.e.,

w(i) = e−λ·d(i) · z2(i). (12)

Do common datasets have a uniform query distribution?
We used the above formulation of spatial density to study
the properties in the used VPR datasets. First, we find that
most of our datasets do have a mostly uniform spatial dis-
tribution for both queries and references, except the Stlu-
cia dataset. Fig. 9 illustrates the distribution of distances to
the k = 1 nearest neighbors for the Pittsburgh and Stlucia
datasets. Second, we can conclude that the assumption that
references and queries have a similar spatial distribution
does hold in common VPR dataset, hence SUE’s default
formulation with uniform reference prior is reasonable.

To properly validate the density compensation concept of
Section 6.3, we also create a modified version of the Stlu-
cia data such that queries and reference actually do have
a different spatial distribution. We greadily subsample the
Stlucia queries such that the spatial density of the resampled
queries is uniform.

Does assuming a uniform query distribution help? Fi-
nally, we test the density compensated SUE of Equa-
tion (12) on the VPR datasets for different choices of k,
see Table 5.

Since queries and references of datasets other than Stlu-
cia are already uniformly distributed spatially, the table con-
firms that density compensation does not lead to any ma-
jor effect on SUE’s performance. We also see that for the
(unmodified) Stlucia dataset, density compensation actually
hurts performance because the queries and references are in
fact non-uniformly and similarly distributed. The default
uniform prior assumption of SUE is therefore better suited
for Stlucia.

However, if we test density compensated SUE on the
modified Stlucia dataset where queries are in fact uniformly
spatially distributed while the references are not, then we
do observe a benefit over the default SUE as shown in Ta-
ble 6. In this case, the spatial prior of density compensated
SUE does hold, where as the default SUE assumption that
queries and references are similarly distributed does not.



z none k=1 k=3 k=5 k=8 k=10
8− 9 0.92 0.96 0.96 0.96 0.94 0.94
10− 11 0.68 0.76 0.73 0.7 0.71 0.69

Table 6. SUE’s AUC-PR with reference density compensation us-
ing different values of k on the Stlucia dataset when the queries
are resampled to have a close to uniform spatial density (e.g.,
z = 8 − 9). Reference density compensation helps SUE when
queries are spatially uniformly distributed and references are non-
uniformly distributed. Best across the columns is in Bold.

In conclusion, whether spatial density compensation is
needed depends on the specifc spatial distributions of the
references and queries in a dataset. For the studied VPR
benchmark datasets that represent densely collected queries
and references, the default assumption of SUE that their
spatial distributions are similar holds. Still, in applications
where we can expect that queries and references are dis-
tributed differently, then additional density compensation
can be helpful. The formulation of spatial density compen-
sation can be motivated from a probabilistic view on SUE.
Future work can investigate better estimates for query and
reference density for non-uniformly distributed data to fur-
ther improve SUE.

6.5. Precision-Recall curves

In addition to the Precision-Recall curves of the Pittsburgh
dataset in Fig. 1, the PR-curves for the remainder five
datasets are shown in Fig. 10. SUE outperforms the meth-
ods in the RUE and DUE categories on all datasets. GV
remains the overall state-of-the-art, albeit at a two to three
orders of magnitude higher computational cost.

6.6. Complementing geometric verification

We further show in Fig. 11 the generalization of SVM
trained on the Pittsburgh dataset to other datasets. For all
these datasets, the relation of our SUE uncertainty with
DELF-RANSAC leads to complementarity with queries in
the bottom-left of the plot that can be linearly separated.

6.7. SUE combined with other uncertainty estimates

For completeness, we show the combination of other un-
certainty estimation methods with SUE in Fig. 12. Most of
the queries that can be classified as true- or false-positives
by other methods can already be classified using only SUE.
We hypothesize that this is because of SUE’s similarity to
BTL and STUN which also estimate the aleatoric uncer-
tainty, and since SUE already uses the L2-distance and near-
est neighbours in its uncertainty estimate.

6.8. Relating SUE to geometric burstiness

Relation: Features that appear in similar configurations
across multiple unrelated reference images are referred to

as geometric burstiness (GB) [40]. Ideally, such features
should not be considered for estimating the image matching
confidence using geometric verification (GV). Whether
images are related or unrelated is determined using their
pose information, i.e., different images that are physically
close to each other could be looking at the same place.
While the use of pose information of the Top-K retrieved
reference images is common between SUE and GB, the
latter is evaluated for image re-ranking and the former
for VPR. GB is implemented on top of GV and is more
computationally expensive than GV, concretely by an
order of K, but gives better uncertainty estimates. For
completeness, we implement a version of GB inspired
by [40] and compare it to SUE. The implementation details
are as follows.

Our implementation of GB: We use SIFT features, and
perform feature matching in a RANSAC loop between a
query and its Top-K retrieved nearest neighbors. Local fea-
ture matches [qi, rkj ] that satisfy a geometric transform (ho-
mographic) are considered inliers, where qi is the ith query
feature and rkj is the jth feature in kth nearest neighbour.
A query feature qi contributes to geometric burstiness if it
forms part of the inlier set for multiple (say T ) retrieved im-
ages, and in the most naive case, such [qi, rkj ] should be
discarded from the inlier count. But similar to [40], we
down-weight their contribution by T instead of completely
discarding such inliers.

However, Sattler et al. [40] further studied that the top
retrieved images could come from the same place, and
hence query features could legally form part of the inlier
set for multiple retrieved images. To classify whether a
set of reference images represents the same place or not,
we use the definition of place from [7] where images that
are within 25 meters of each other are considered as the
same place. Thus, only inliers from reference images of
different (more than 25 meters apart) places are classified
as geometric bursts. We use K = 20 and for feature
matching the same hyperparameters are used as that of
SIFT-RANSAC.

Results: We report in Table 7 that adding GB on top of
SIFT-RANSAC leads to better performance than just using
SIFT-RANSAC. Overall, among all uncertainty estimation
methods, DELF-RANSAC still performs the best. GB is the
most computationally expensive among all the uncertainty
estimation methods. Note that GB could also be added on
top of Superpoint-RANSAC and DELF-RANSAC albeit at
an even higher computational cost.

We further test if SUE remains complementary to GB,
given that both methods use reference poses. Fig. 13 shows
that the uncertainty estimates from SUE can also comple-
ment GB. In conclusion, the several orders of magnitude



Figure 10. The precision-recall curves on the six datasets using SUE and other baselines. SUE outperforms the existing methods within the
efficient category on all datasets. Note how an L2-based retrieval uncertainty outperforms the data-driven aleatoric uncertainty estimated
in BTL and STUN.

higher computational needs of GB compared to SUE, and
their mutual complementarity suggest that SUE is a useful
baseline for uncertainty estimation in VPR.

6.9. Qualitative results

We show examples of queries with their corresponding
nearest neighbors ranked with the uncertainties computed
by the different types of uncertainty estimation methods in
Fig. 14. We keep the set of randomly chosen queries the



Figure 11. The relation of L2-based uncertainty, STUN, and SUE with geometric verification uncertainty. The SVM boundaries are learned
on the Pittsburgh dataset only. Each point represents a query, and the color indicates whether it is a true-positive (Blue) or a false-positive
(Red). The linear SVM boundaries are shown as black lines, while the dashed lines are the SVM margins. The combination of SUE with
geometric-verification leads to more correctly matched queries in the bottom right (where SUE is certain but GV is uncertain) of the plots
identifying complementarity. For better visualization, the vertical scale is in log-space, due to which the SVM boundaries appear non-linear
to the reader but are linear.

same for all the methods. These examples further indicate
what each method is sensitive to for uncertainty estimation.



Figure 12. The relation of L2-based, PA-score, BTL, and STUN uncertainties with SUE uncertainty. Each point represents a query, and
the color indicates whether it is a true-positive (Blue) or a false-positive (Red). The linear SVM boundaries are shown as black lines, while
the dashed lines are the SVM margins. As indicated by the near-vertical decision boundaries, most of the queries that can be classified as
true- or false-positives by other methods can also be classified by SUE, and we do not see much complementarity.

↑ Pitts. ↑ Nord. ↑ MSLS ↓ Time
L2-dist 0.87 0.18 0.64 0.05
STUN 0.79 0.05 0.44 0.10
SUE 0.94 0.26 0.77 1.08
SIFT 0.92 0.15 0.70 129
DELF 0.97 0.84 0.95 1587

GB (SIFT) 0.92 0.31 0.87 2709

Table 7. AUR-PR and computation time (msecs) comparison of
the methods discussed in the main paper with geometric bursti-
ness [40]. Best across the columns is in Bold. Implementing GB
on top of SIFT-RANSAC leads to better performance but at sev-
eral orders of magnitude higher computational cost.

Figure 13. SUE remains complementary to GB since many true-
positives can be separated from false-positives using SUE uncer-
tainty and not using GB. See other such plots in this paper for
details on the employed info-graphics.
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Figure 14. Exemplar matched/mismatched queries are ranked with different types of estimated uncertainties in the Pittsburgh dataset. Note
that the set of chosen queries is the same for all types of uncertainty estimation methods. I(n) denotes the nearest neighbor where the
subscript n denotes its rank. The number of nearest neighbors shown relates to the corresponding number needed by each method (e.g.
PA-score requires two nearest neighbors). The retrieved nearest neighbors for BTL are different than other methods due to the different
feature encoder. A good uncertainty estimation method when used for ordering would rank correct matches to the left and incorrect matches
to the right of the reader. The query image in column 12 of SUE depicts the failure case of SUE, where the perceptually aliased nearest
neighbors are geographically far-apart leading to high uncertainty but the best match is still the correct match.
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