A. Proof of Equation 6

Here, we give details of the derivation of the y-updates in
Eq. (6) from the upper bound (majorizing function) in (9).
Given a solution y(") at iteration n, the goal is to find the
next iterate y (") that minimizes the following tight upper
bound, s.t. simplex constraint y € AN-1L.
Bly,y™)=-y'k -y’

Wiy — X\yH(y) (9)

where k = (K (f, — m))i<p<n.

The objective function of (9) is strictly convex. Taking
into account the simplex constraint on y, the associated La-
grangian reads:
Lly,y™) = —y'k- Ay H(y)+y(y'In—1)

(10)
where v is the Lagrange multiplier for simplex constraint
y € AN~1and 1y is the vector of ones. Note that we do
not impose explicitly the constraints on the non-negativity
of the components of y because these are implicitly en-
forced with the entropic barrier term in (9), i.e., —A\y H(y).
Now, computing the gradient of £(y,y ™)) w.r.t y yields:

VyL(y,y™) = —k=AW'y" + (y4+Ay ) 1n + Ay log(y)

(11)
By setting the gradients of (11) to 0, we get the optimal
solution:

N
y£n+1) — exp ((K(fp —m) + )\wayén))/x\y) )

qg=1
exp (=(7 + Ay)) (12)

Using this expression in the

Zp y,(,"H) = 1 enables to recover the following ex-
pression of exp (77 + Ay):

N
Zexp ((K

Plugging this expression back in (12), we get the final up-
dates:

A n
gthty( )

simplex constraint

N
(fj —m) + A Z wj,qygn))/)‘y>

q=1

exp ((K(£ —m) + A0 w0 >/A)

(n+1) _

Yp

(13)
B. Cauchy and convergent sequence proof

Let us consider iteration [, with the associated current in-
lierness scores y. Let us prove that {m'};cy is a Cauchy
sequence. Recall the recursive relation:

N l

11 szl yp K (f, — m')f,
mT = (14)
SNy K(f, — ml)
p=1Yp L {Ip

zjilexp ((r (8 —m) A wigd™) /)

with K (f, —m') = exp( %), for some h > 0. We

define:
k(z) = exp(—) (15)

N

ul = ZypK(fp —m') (16)
v_zyp (f, — m))f, (17)
Step 1: First, let us prove that {u'};cy is a Cauchy se-
quence. Recall that in a metric space, a convergent se-

quence is necessarily a Cauchy sequence. Therefore, we
only need to show that u' is convergent (i.e bounded and
strictly monotonic).

Notice that for z > 0, 0 < k(x) < 1. Therefore:

ol f, —m'
u =3 ypk(IF=—1") (18)
p=1
N
<Dy <l (19)
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Therefore, u! is bounded between 0 and 1. Now, let us study

the consecutive differences Al = ¢!+1 — ¢!

N
|, — m"H1|? £, —m'|]?
A
p=1
(20)
Because k is convex, one can say that Va, b € R:
k() — k(b) > K'(b)(a — b) 1)
And because k' (b) = —k(b) in our case, one ends up with:
k(@) — k(b) > k(b)(b— a) (22)
- |l —m P _ lfp—m'|?
Applied with a 7 and b 57— One can
obtain:
N
£, —m'|> ||, —m"!|?
Z Z [ h2 o 12

1 N
}TZ K(f, —m') [[lm|? — m"

—2<m f,>+2 <m't f, >]
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Now is time to recall recursive relation m'™! = —. By
U

simply expanding, one can end up with:

T R L B
273 |m®||“u o m! v "
1
—ﬁul [||m ||2 2 <m! m't! >—|—Hml+1||2]
1
=g u![m’ = m"*? (23)

Therefore, Al > 0, which shows that {u'};c is strictly
increasing. This concludes the proof that ! is a convergent
sequence, and therefore a Cauchy one.

Step 2:  Now, on top of concluding the proof that
{u'};en is a Cauchy sequence, Eq. (23) also offers an inter-
esting relation between {A!};cw and the sequence of inter-
est {m'};cn, which we can use. Indeed, for any Iy, m € N,
we can sum Eq. (23):

lo+m lo+m

Z Al > Z u!||m! — m'*+|? (24)

ll[] ll()

0 lo+m
_h2 Z ||m l+1H2 (25)
1=y
l
Hmlo-i-nL o mlo||2 (26)

> h2
Where Eq. (25) follows because {u'};cy is strictly in-
creasing, and Eq. (26) follows from the triangle inequality.
Now, the left-hand side of Eq. (24) can be reduced to
Z;‘)Tom Al = ylotm+l _glo But because we proved in
Step 1 that {u'};cy was a Cauchy sequence, this difference
is bounded by a constant. This concludes the proof that
{m!},cy is itself a Cauchy sequence in the Euclidean space.

Step 3: We just proved that {m!};cy was a Cauchy se-
quence. Therefore {m'};cx can only converge to a single
value m*. We now use the continuity of function g to con-
clude that m* has to be a solution of the initial equation (7):

m* = lim m'"! = lim g(m') (27)
l—o00 l—o0
= g(lim m') = g(m*) (28)
=0

C. Further details on MTA

We summarize the traditional mode seeking MeanShift pro-
cedure, upon which our approach is based, in Algorithm 1.
Moreover, our robust multi-modal MeanShift for test-time
augmentation, named MTA, is presented in Algorithm 2 in
a non-vectorized manner to highlight each operation. The
handcrafted prompts [46] for ensembling are listed in Ta-
ble 12. We use N=64 augmented views (63 from random

Table 7. Effect of A and A\, on the ImageNet dataset. Reported
value is the top-1 accuracy averaged over 3 random seeds.

)‘y — 00
N 0.01 005 01 02 04 08 16 32 10 100 (MeanShift)

0 66.7 66.7 668 683 658 653 656 659 660 66.1 66.1
0.5 66.7 66.7 668 68.7 67.7 668 664 662 66.1 66.1 -
66.7 66.7 669 689 682 674 669 665 663 66.1

66.8 66.8 67.1 69.1 688 680 674 67.0 66.5 66.1

66.6 665 669 693 69.1 686 680 675 668 662

62.0 625 642 687 693 69.0 685 68.1 672 663

573 585 610 658 69.1 693 689 685 677 664

0 B =

>

cropping (RandomCrop) and the original image) in all our
experiments except in Table 3 to be consistent with DiffTPT
which uses 128 augmented views (63 from diffusion, 64
from random cropping and the original image). Table 7
shows the interdependency of A and Ay and the role of the
inlierness scores: as Ay approaches 0, it tends toward a peak
selection and trivial solutions; conversely, as A, grows, it
tends to MeanShift with uniform inlierness scores.

Algorithm 1 Mode seeking MeanShift [9]

Require: ~ > 0 the bandwidth, K a kernel function (e.g.,
Gaussian kernel), mP a first estimate of the mode, a set
of data points (f,)1<p<n, a threshold value €
[+ 0
while / = 0 or [|[m! — m'~!|| > e do
Z;V:1 K(fp_ml)fp

Elpvzl K(fp_ml)

N =

mitl «

l+<1+1
end while
m+ m!?!
return m

> mode update

RN

D. Additional results

Zero-shot (Section 5). We report detailed results for Ta-
ble 1, Table 2 and Table 3 with average top-1 accuracy and
standard deviation in Table 8, Table 9 and Table 10 respec-
tively.

Few-shot (Section 6). Additional results for CoOp with
16 tokens are depicted in Figure 5. A similar trend to that
shown in Figure 3 is evident, with more pronounced per-
formance degradation observed for TPT. On the contrary,
MTA benefits from these more performant prompts.

Ablation study (Section 7). Details for the 15 datasets
for the filtering strategy ablation study of Table 6 are given
in Table 11. With the exception of ImageNet-A, the con-
fidence threshold strategy consistently demonstrates lower
performances compared to our inlierness formulation.



Algorithm 2 MTA with Gaussian kernel

Require: A set of augmented embeddings (f},)1<,<n with f; being the original image, a set of class embeddings (tx)1<r<x,

a threshold value €, 7 the temperature variable of the CLIP model.

I: wp 4 < Affinity(f,, £, (tk)1<k<r.7) Vp,qg€{l,...N} > See Algorithm 3
2 h2 m Seer, lfp = folP Vpe{l,..,N} > I,, the closest neighbors of p, p set to 0.3
3 m<+f > mode initialization
4: yp % Vpe{l,.., N} > Initial inlierness scores uniform
5: while (1) and (2) not converged do

6: n<+0

7 vy

8: while n = 0 or ||[y" —y" !/ > edo

(n+1) - eXP((K(fp_m)+/\2iV=1 wpyqyt(ln))/xy) Vpe {1 N}

9: Yp =, exp((K(fj—m)+)\ S wj,qyfz"))/Ay) > (1) inlierness scores update
10: n<n+1

11: end while

12: y <yt

13: [0

14: m’ «— m

15:  whilel =0 or [[m! — m!~!|| > edo

6. mlt! %;yzflgé:—mﬁ? > (2) mode update
17: l—1+1

18: end while

19: m ¢+ m‘~!

20: end while
21: return arg max, m'ty > return prediction based on the mode

Algorithm 3 Affinity measure based on predictions

1: function AFFINITY (£, £, (t;)1<k<k, T)

2 if p = ¢ then

3 return 0

4: end if

5 Ip e Tf;tk 3 Lok Tfétk Vke{l,. K} > similarity with classy
6 Spk %; Sqk % Vke{l,.,K} > Softmax operation
7 Wy < ShSy

8: return w, 4

9: end function




Table 8. Details of Table 1 with averaged top-1 accuracy and standard deviation computed over 3 random seeds.

Method ImageNet -A -V2 -R -Sketch  Average

TPT X 68.94 54.63 63.41 77.04 4797 62.40
+ .06 +21 +.12 +£.02 +.05 +.03

MTA v 69.29 5741 63.61 7692  48.58 63.16

+.09 +.15 +£.07 +£.13 +£.05 + .07

70.08 58.06 6424 7833  49.61 64.06
+.03 +£.07 +£.0 <£.11 £.06 =+ .06

MTA + Ensemble v

73.61 57.85 66.69 7799  49.59 65.14
+ .17 +34 +£25 +£.69 +£.34 +.1

73.99 59.29 6697 782 49.96 65.68
+ .18 +.12 +£25 +£.76 £ .46 +.25

TPT + CoOp X

MTA + CoOp v

Table 9. Details of Table 2 with averaged top-1 accuracy and standard deviation computed over 3 random seeds.

Method SUN397 Aircraft EuroSAT Cars Foodl101 Pets Flowerl02 Caltech101 DTD UCF101 Average

TPT 65.41 23.1 42.93 66.36 84.63 87.22 68.86 94.12 46.99 68.00 64.76
+ .03 + .39 +2 + .31 +.03 +.19 + .32 + .21 + .31 + .22 + .05

MTA 64.98 25.32 38.71 68.05 84.95 88.22 68.26 94.13 45.59 68.11 64.63
+0 + .25 + .22 +.16 =+ .06 +.07 + .08 +.02 + .18 + .11 +.02

MTA + E 66.67 252 45.36 68.47 85.00 88.24 68.06 94.21 45.9 68.69 65.58
' £ .05 + .37 +.16 =+ .08 +.03 + .07 +.2 + .21 +.09 .15 +.05

Table 10. Details of Table 3 with averaged top-1 accuracy and standard deviation computed over 3 random seeds.

Augmentation Method ImageNet -A -V2 R -Sketch  Average
68.15 51.23 66.17 76.88  49.31 62.35

RandomCro TPT +3 +31 +2 +2 +2 + 05
p MTA 69.11 5527 6571 7748 5023  63.56

+4 415 +4 +36 +.4 + .11

. 67.83 5343 6518 7685 502 62.7

Diffusion DifffPT o3 64 £.43 +.11 +36  +.19
MTA 69.18 545 6481 7682 5109 6328

+ 4 +31 £.1 £.26 + 4 +.07

Table 11. Details of Table 6 for inlierness scores ablation study. (1) MeanShift (no inlierness scores) (2) confidence thresh. (10%) (3)
Inlierness scores. 1 stands for ImageNet, A for ImageNet-A, V for ImageNet-V2, R for ImageNet-R and K for ImageNet-Sketch. Reported
values are averaged top-1 accuracy and standard deviation computed over 3 random seeds.

I A \% R K SUN397  Aircraft EuroSAT Cars Foodl01 Pets Flowerl02 Caltechl0l DTD UCF101 Average
) 66.1 48.05 6029 67.69 4059  63.74 25.11 24.72 66.53 83.12 85.24 66.69 91.52 4435  65.16 59.93
+.03 +.14 +£23 +.1 +.05 +£.09 +.1 +.08 +.2 +.09 +.22 +.25 +.11 +.24 £.05 +.07
@ 68.26 60.66 633 76.14 4759 = 63.56 24.52 36.13 67.59 83.39 85.83 66.51 92.69 4545 6741 63.27
+.07 +£.19 +£.13 +£.08 +.05 +£.11 +.24 + .04 +.09 +.14 +.32 + .42 +.1 +.1 +.39 +.04
69.29 5741 63.61 7692 4858  64.98 25.32 38.71 68.05 84.95 88.22 68.26 94.13 4559  68.11 64.14

® +£.09 +£.15 £.07 £.13 £.05 +0 +.25 +.22 +.16 +.06 +.07 +.08 +.02 +.18 £.11 +.01
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Figure 5. Additional results for Figure 3 with M=16 tokens for the CoOp pretrained prompts.



Table 12. The 80 handcrafted prompts used for majority vote.

ELINET)

”a photo of al[].””,”a bad photo of al[]””,”a photo of many|[].”,”’a sculpture of al]”,

99 9

”a photo of the hard to seel]”,”’a low resolution photo of the[].”,”a rendering of al]
"graffiti of al[]”,”a bad photo of the[].”,”a cropped photo of thel[].”,,”a tattoo of al]”,
“the embroidered][].”,”a photo of a hard to seel]”,”a bright photo of al]”,
”a photo of a clean([].”,”a photo of a dirty/[].”,”a dark photo of thel]”,
a drawing of all]””,”a photo of my[].”,”’the plastic[].”’,”’a photo of the cool[]”,

close-up photo of al[]””,”a black and white photo of thel[].”,”a painting of thel[]”,
painting of al[]”,”a pixelated photo of the[].”,”a sculpture of thel]”,

ELIRET

bright photo of the[]”,”a cropped photo of al[]”,”a plastic]|[].”,
photo of the dirty[].”,”a Jjpeg corrupted photo of al].”’,”a blurry photo of thel[].”,
a photo of the[].”,”a good photo of thel[].”,”a rendering of thel[].”,

95 99

“a[lin a video game.”,”a photo of onel[].”,”a doodle of al]”,

LTI T]

”a close—up photo of the[].””,”the origami [].”,”the[]in a video game.’,
”a sketch of a []”, ”a doodle of the []”, "a origami [].”, "a low resolution photo of a []

LTI T] 93 99

“the toy[]”,”a rendition of thel[].”,”a photo of the clean]|].”,”’a photo of a largel[].”,

ERINET) 93 99

a rendition of al[]”,”’a photo of a nicel[].”,”a photo of a weird][].,
blurry photo of al[]””,”a cartoon[].”,”art of al[].”’,”’a sketch of thel]”,

95 99

embroidered|[].”,”a pixelated photo of all]”,”itap of thell”,

jpeg corrupted photo of the[]”,”a good photo of all]”,”a plushiel].”,

photo of the nice[].”,”a photo of the small][].”,”a photo of the weird[].,

“the cartoon[].”,”art of thel].”,”a drawing of the[].”,”a photo of the largel[].”,

”a black and white photo of a [].”, "the plushie [].”, ”a dark photo of a [].”, "itap of a []”,

“graffiti of thel]”,”a toyl[]”, "itap of my[].”,”a photo of a cooll[]”,
”a photo of a small[]”,”a tattoo of thel[]”

29
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