
A. Proof of Equation 6
Here, we give details of the derivation of the y-updates in
Eq. (6) from the upper bound (majorizing function) in (9).
Given a solution y(n) at iteration n, the goal is to find the
next iterate y(n+1) that minimizes the following tight upper
bound, s.t. simplex constraint y ∈ ∆N−1:

B(y,y(n)) = −ytk− λ

2
ytW ty(n) − λyH(y) (9)

where k = (K(fp −m))1≤p≤N .
The objective function of (9) is strictly convex. Taking

into account the simplex constraint on y, the associated La-
grangian reads:

L(y,y(n)) = −ytk−λ

2
ytW ty(n)−λyH(y)+γ(yt1N−1)

(10)
where γ is the Lagrange multiplier for simplex constraint
y ∈ ∆N−1 and 1N is the vector of ones. Note that we do
not impose explicitly the constraints on the non-negativity
of the components of y because these are implicitly en-
forced with the entropic barrier term in (9), i.e., −λyH(y).
Now, computing the gradient of L(y,y(n)) w.r.t y yields:

∇yL(y,y(n)) = −k−λW ty(n)+(γ+λy)1N+λy log(y)
(11)

By setting the gradients of (11) to 0, we get the optimal
solution:

y(n+1)
p = exp

(
(K(fp −m) + λ

N∑
q=1

wp,qy
(n)
q )/λy

)
.

exp (−(γ + λy)) (12)

Using this expression in the simplex constraint∑
p y

(n+1)
p = 1 enables to recover the following ex-

pression of exp (γ + λy):

N∑
j=1

exp

(
(K(fj −m) + λ

N∑
q=1

wj,qy
(n)
q )/λy

)
Plugging this expression back in (12), we get the final up-
dates:

y(n+1)
p =

exp
(
(K(fp −m) + λ

∑N
q=1 wp,qy

(n)
q )/λy

)
∑N

j=1 exp
(
(K(fj −m) + λ

∑N
q=1 wj,qy

(n)
q )/λy

)
(13)

B. Cauchy and convergent sequence proof
Let us consider iteration l, with the associated current in-
lierness scores y. Let us prove that {ml}l∈N is a Cauchy
sequence. Recall the recursive relation:

ml+1 =

∑N
p=1 ypK(fp −ml)fp∑N
p=1 ypK(fp −ml)

(14)

with K(fp−ml) = exp(−∥ fp−ml

h ∥2), for some h > 0. We
define:

k(x) = exp(−x) (15)

ul =

N∑
p=1

ypK(fp −ml) (16)

vl =

N∑
p=1

ypK(fp −ml)fp (17)

Step 1: First, let us prove that {ul}l∈N is a Cauchy se-
quence. Recall that in a metric space, a convergent se-
quence is necessarily a Cauchy sequence. Therefore, we
only need to show that ul is convergent (i.e bounded and
strictly monotonic).
Notice that for x > 0, 0 ≤ k(x) ≤ 1. Therefore:

ul =

N∑
p=1

ypk(∥
fp −ml

h
∥2) (18)

≤
N∑

p=1

yp ≤ 1 (19)

Therefore, ul is bounded between 0 and 1. Now, let us study
the consecutive differences ∆l = ul+1 − ul:

∆l =

N∑
p=1

yp

[
k(
∥fp −ml+1∥2

h2
)− k(

∥fp −ml∥2

h2
)

]
(20)

Because k is convex, one can say that ∀a, b ∈ R:

k(a)− k(b) ≥ k′(b)(a− b) (21)

And because k′(b) = −k(b) in our case, one ends up with:

k(a)− k(b) ≥ k(b)(b− a) (22)

Applied with a =
∥fp−ml+1∥2

h2 and b =
∥fp−ml∥2

h2 , one can
obtain:

∆l ≥
N∑

p=1

ypK(fp −ml)

[
∥fp −ml∥2

h2
− ∥fp −ml+1∥2

h2

]

=
1

h2

N∑
p=1

ypK(fp −ml)
[
∥ml∥2 − ∥ml+1∥2

−2 < ml, fp > +2 < ml+1, fp >
]



Now is time to recall recursive relation ml+1 =
vl

ul
. By

simply expanding, one can end up with:

∆l ≥ 1

h2

[
∥ml∥2ul − ∥v

l∥2

ul
− 2 < ml, vl > +2

∥vl∥2

ul

]
=

1

h2
ul
[
∥ml∥2 − 2 < ml,ml+1 > +∥ml+1∥2

]
=

1

h2
ul∥ml −ml+1∥2 (23)

Therefore, ∆l > 0, which shows that {ul}l∈N is strictly
increasing. This concludes the proof that ul is a convergent
sequence, and therefore a Cauchy one.

Step 2: Now, on top of concluding the proof that
{ul}l∈N is a Cauchy sequence, Eq. (23) also offers an inter-
esting relation between {∆l}l∈N and the sequence of inter-
est {ml}l∈N, which we can use. Indeed, for any l0,m ∈ N,
we can sum Eq. (23):

l0+m∑
l=l0

∆l ≥ 1

h2

l0+m∑
l=l0

ul∥ml −ml+1∥2 (24)

≥ul0

h2

l0+m∑
l=l0

∥ml −ml+1∥2 (25)

≥ul0

h2
∥ml0+m −ml0∥2 (26)

Where Eq. (25) follows because {ul}l∈N is strictly in-
creasing, and Eq. (26) follows from the triangle inequality.
Now, the left-hand side of Eq. (24) can be reduced to∑l0+m

l=l0
∆l = ul0+m+1 − ul0 . But because we proved in

Step 1 that {ul}l∈N was a Cauchy sequence, this difference
is bounded by a constant. This concludes the proof that
{ml}l∈N is itself a Cauchy sequence in the Euclidean space.

Step 3: We just proved that {ml}l∈N was a Cauchy se-
quence. Therefore {ml}l∈N can only converge to a single
value m∗. We now use the continuity of function g to con-
clude that m∗ has to be a solution of the initial equation (7):

m∗ = lim
l→∞

ml+1 = lim
l→∞

g(ml) (27)

= g( lim
l→∞

ml) = g(m∗) (28)

C. Further details on MTA
We summarize the traditional mode seeking MeanShift pro-
cedure, upon which our approach is based, in Algorithm 1.
Moreover, our robust multi-modal MeanShift for test-time
augmentation, named MTA, is presented in Algorithm 2 in
a non-vectorized manner to highlight each operation. The
handcrafted prompts [46] for ensembling are listed in Ta-
ble 12. We use N=64 augmented views (63 from random

Table 7. Effect of λ and λy on the ImageNet dataset. Reported
value is the top-1 accuracy averaged over 3 random seeds.

λ
λy 0.01 0.05 0.1 0.2 0.4 0.8 1.6 3.2 10 100

→∞
(MeanShift)

0 66.7 66.7 66.8 68.3 65.8 65.3 65.6 65.9 66.0 66.1 66.1
0.5 66.7 66.7 66.8 68.7 67.7 66.8 66.4 66.2 66.1 66.1 -
1 66.7 66.7 66.9 68.9 68.2 67.4 66.9 66.5 66.3 66.1 -
2 66.8 66.8 67.1 69.1 68.8 68.0 67.4 67.0 66.5 66.1 -
4 66.6 66.5 66.9 69.3 69.1 68.6 68.0 67.5 66.8 66.2 -
8 62.0 62.5 64.2 68.7 69.3 69.0 68.5 68.1 67.2 66.3 -

16 57.3 58.5 61.0 65.8 69.1 69.3 68.9 68.5 67.7 66.4 -

cropping (RandomCrop) and the original image) in all our
experiments except in Table 3 to be consistent with DiffTPT
which uses 128 augmented views (63 from diffusion, 64
from random cropping and the original image). Table 7
shows the interdependency of λ and λy and the role of the
inlierness scores: as λy approaches 0, it tends toward a peak
selection and trivial solutions; conversely, as λy grows, it
tends to MeanShift with uniform inlierness scores.

Algorithm 1 Mode seeking MeanShift [9]

Require: h > 0 the bandwidth, K a kernel function (e.g.,
Gaussian kernel), m0 a first estimate of the mode, a set
of data points (fp)1≤p≤N , a threshold value ϵ

1: l← 0
2: while l = 0 or ∥ml −ml−1∥ ≥ ϵ do

3: ml+1←
∑N

p=1 K(fp−ml)fp∑N
p=1 K(fp−ml)

▷ mode update

4: l← l + 1
5: end while
6: m←ml−1

7: return m

D. Additional results
Zero-shot (Section 5). We report detailed results for Ta-
ble 1, Table 2 and Table 3 with average top-1 accuracy and
standard deviation in Table 8, Table 9 and Table 10 respec-
tively.

Few-shot (Section 6). Additional results for CoOp with
16 tokens are depicted in Figure 5. A similar trend to that
shown in Figure 3 is evident, with more pronounced per-
formance degradation observed for TPT. On the contrary,
MTA benefits from these more performant prompts.

Ablation study (Section 7). Details for the 15 datasets
for the filtering strategy ablation study of Table 6 are given
in Table 11. With the exception of ImageNet-A, the con-
fidence threshold strategy consistently demonstrates lower
performances compared to our inlierness formulation.



Algorithm 2 MTA with Gaussian kernel

Require: A set of augmented embeddings (fp)1≤p≤N with f1 being the original image, a set of class embeddings (tk)1≤k≤K ,
a threshold value ϵ, τ the temperature variable of the CLIP model.

1: wp,q ← Affinity(fp, fq , (tk)1≤k≤K , τ ) ∀ p, q ∈ {1, ..., N} ▷ See Algorithm 3
2: h2

p ← 1
ρ(N−1)

∑
q∈Ip
∥fp − fq∥2 ∀ p ∈ {1, ..., N} ▷ Ip the closest neighbors of p, ρ set to 0.3

3: m← f1 ▷ mode initialization
4: yp ← 1

N ∀ p ∈ {1, ..., N} ▷ Initial inlierness scores uniform
5: while (1) and (2) not converged do
6: n← 0

7: y0← y

8: while n = 0 or ∥yn − yn−1∥ ≥ ϵ do

9: y
(n+1)
p ← exp((K(fp−m)+λ

∑N
q=1 wp,qy

(n)
q )/λy)∑N

j=1 exp
(
(K(fj−m)+λ

∑N
q=1 wj,qy

(n)
q )/λy

) ∀ p ∈ {1, ..., N} ▷ (1) inlierness scores update

10: n← n+ 1

11: end while
12: y← yn−1

13: l← 0

14: m0←m

15: while l = 0 or ∥ml −ml−1∥ ≥ ϵ do

16: ml+1←
∑N

p=1 ypK(fp−ml)fp∑N
p=1 ypK(fp−ml)

▷ (2) mode update

17: l← l + 1

18: end while
19: m←ml−1

20: end while
21: return argmaxk mttk ▷ return prediction based on the mode

Algorithm 3 Affinity measure based on predictions

1: function AFFINITY(fp, fq , (tk)1≤k≤K , τ )
2: if p = q then
3: return 0
4: end if
5: lp,k ← τ f tptk ; lq,k ← τ f tqtk ∀ k ∈ {1, ...,K} ▷ similarity with classk

6: sp,k ← exp lp,k∑K
j=1 exp lp,j

; sq,k ← exp lq,k∑K
j=1 exp lq,j

∀ k ∈ {1, ...,K} ▷ Softmax operation

7: wp,q ← stpsq

8: return wp,q

9: end function



Table 8. Details of Table 1 with averaged top-1 accuracy and standard deviation computed over 3 random seeds.

Method ImageNet -A -V2 -R -Sketch Average

TPT ✗
68.94 54.63 63.41 77.04 47.97 62.40
± .06 ± .21 ± .12 ± .02 ± .05 ± .03

MTA ✓
69.29 57.41 63.61 76.92 48.58 63.16
± .09 ± .15 ± .07 ± .13 ± .05 ± .07

MTA + Ensemble ✓
70.08 58.06 64.24 78.33 49.61 64.06
± .03 ± .07 ± .09 ± .11 ± .06 ± .06

TPT + CoOp ✗
73.61 57.85 66.69 77.99 49.59 65.14
± .17 ± .34 ± .25 ± .69 ± .34 ± .1

MTA + CoOp ✓
73.99 59.29 66.97 78.2 49.96 65.68
± .18 ± .12 ± .25 ± .76 ± .46 ± .25

Table 9. Details of Table 2 with averaged top-1 accuracy and standard deviation computed over 3 random seeds.

Method SUN397 Aircraft EuroSAT Cars Food101 Pets Flower102 Caltech101 DTD UCF101 Average

TPT 65.41 23.1 42.93 66.36 84.63 87.22 68.86 94.12 46.99 68.00 64.76
± .03 ± .39 ± .2 ± .31 ± .03 ± .19 ± .32 ± .21 ± .31 ± .22 ± .05

MTA 64.98 25.32 38.71 68.05 84.95 88.22 68.26 94.13 45.59 68.11 64.63
± 0 ± .25 ± .22 ± .16 ± .06 ± .07 ± .08 ± .02 ± .18 ± .11 ± .02

MTA + E. 66.67 25.2 45.36 68.47 85.00 88.24 68.06 94.21 45.9 68.69 65.58
± .05 ± .37 ± .16 ± .08 ± .03 ± .07 ± .2 ± .21 ± .09 ± .15 ± .05

Table 10. Details of Table 3 with averaged top-1 accuracy and standard deviation computed over 3 random seeds.

Augmentation Method ImageNet -A -V2 R -Sketch Average

RandomCrop
TPT 68.15 51.23 66.17 76.88 49.31 62.35

± .3 ± .31 ± .2 ± .2 ± .2 ± .05

MTA 69.11 55.27 65.71 77.48 50.23 63.56
± .4 ± .15 ± .4 ± .36 ± .4 ± .11

Diffusion
DiffTPT 67.83 53.43 65.18 76.85 50.2 62.7

± .23 ± .64 ± .43 ± .11 ± .36 ± .19

MTA 69.18 54.5 64.81 76.82 51.09 63.28
± .4 ± .31 ± .1 ± .26 ± .4 ± .07

Table 11. Details of Table 6 for inlierness scores ablation study. (1) MeanShift (no inlierness scores) (2) confidence thresh. (10%) (3)
Inlierness scores. I stands for ImageNet, A for ImageNet-A, V for ImageNet-V2, R for ImageNet-R and K for ImageNet-Sketch. Reported
values are averaged top-1 accuracy and standard deviation computed over 3 random seeds.

I A V R K SUN397 Aircraft EuroSAT Cars Food101 Pets Flower102 Caltech101 DTD UCF101 Average

(1) 66.1 48.05 60.29 67.69 40.59 63.74 25.11 24.72 66.53 83.12 85.24 66.69 91.52 44.35 65.16 59.93
± .03 ± .14 ± .23 ± .1 ± .05 ± .09 ± .1 ± .08 ± .2 ± .09 ± .22 ± .25 ± .11 ± .24 ± .05 ± .07

(2) 68.26 60.66 63.3 76.14 47.59 63.56 24.52 36.13 67.59 83.39 85.83 66.51 92.69 45.45 67.41 63.27
± .07 ± .19 ± .13 ± .08 ± .05 ± .11 ± .24 ± .04 ± .09 ± .14 ± .32 ± .42 ± .1 ± .1 ± .39 ± .04

(3) 69.29 57.41 63.61 76.92 48.58 64.98 25.32 38.71 68.05 84.95 88.22 68.26 94.13 45.59 68.11 64.14
± .09 ± .15 ± .07 ± .13 ± .05 ± 0 ± .25 ± .22 ± .16 ± .06 ± .07 ± .08 ± .02 ± .18 ± .11 ± .01
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Figure 5. Additional results for Figure 3 with M=16 tokens for the CoOp pretrained prompts.



Table 12. The 80 handcrafted prompts used for majority vote.

”a photo of a [].”, ”a bad photo of a [].”, ”a photo of many [].”, ”a sculpture of a [].”,
”a photo of the hard to see [].”, ”a low resolution photo of the [].”, ”a rendering of a [].”,
”graffiti of a [].”, ”a bad photo of the [].”, ”a cropped photo of the [].”,, ”a tattoo of a [].”,
”the embroidered [].”, ”a photo of a hard to see [].”, ”a bright photo of a [].”,
”a photo of a clean [].”, ”a photo of a dirty [].”, ”a dark photo of the [].”,
”a drawing of a [].”, ”a photo of my [].”, ”the plastic [].”, ”a photo of the cool [].”,
”a close-up photo of a [].”, ”a black and white photo of the [].”, ”a painting of the [].”,
”a painting of a [].”, ”a pixelated photo of the [].”, ”a sculpture of the [].”,
”a bright photo of the [].”, ”a cropped photo of a [].”, ”a plastic [].”,
”a photo of the dirty [].”, ”a jpeg corrupted photo of a [].”, ”a blurry photo of the [].”,
”a photo of the [].”, ”a good photo of the [].”, ”a rendering of the [].”,
”a [] in a video game.”, ”a photo of one [].”, ”a doodle of a [].”,
”a close-up photo of the [].”, ”the origami [].”, ”the [] in a video game.”,
”a sketch of a [].”, ”a doodle of the [].”, ”a origami [].”, ”a low resolution photo of a [].”,
”the toy [].”, ”a rendition of the [].”, ”a photo of the clean [].”, ”a photo of a large [].”,
”a rendition of a [].”, ”a photo of a nice [].”, ”a photo of a weird [].”,
”a blurry photo of a [].”, ”a cartoon [].”, ”art of a [].”, ”a sketch of the [].”,
”a embroidered [].”, ”a pixelated photo of a [].”, ”itap of the [].”,
”a jpeg corrupted photo of the [].”, ”a good photo of a [].”, ”a plushie [].”,
”a photo of the nice [].”, ”a photo of the small [].”, ”a photo of the weird [].”,
”the cartoon [].”, ”art of the [].”, ”a drawing of the [].”, ”a photo of the large [].”,
”a black and white photo of a [].”, ”the plushie [].”, ”a dark photo of a [].”, ”itap of a [].”,
”graffiti of the [].”, ”a toy [].”, ”itap of my [].”, ”a photo of a cool [].”,
”a photo of a small [].”, ”a tattoo of the [].”
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