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Supplementary Material

1. Implementation Details

In this section, we describe the key modifications based on
StableDiffusion v1.41 to implement the proposed method.
We point to the original location in StableDiffusion code
and highlight the modified lines in each code snippet.

Data loading. We store all images and captions belong-
ing to an image set in a single image file and text file. The
images are concatenated vertically, and the captions corre-
sponding to different images are separated by a special to-
ken <|split|>, as illustrated in Fig. 1. This enables us
to easily reuse existing single image dataloaders in PyTorch.
We only use square images in training and obtain the image

dog in sunset<|split|>dog under a tree a red van is driving down the street<|split|>a 
painting of a red van parked in a field

Dog.png

Dog.txt

Van.png

Van.txt

Figure 1. Data format. An image file is the concatenation of all
images in the set. The text file contains corresponding captions
separated by a special token.

set size by dividing the image height with the image weight.
Given a batch of data, we extract individual images and text,
and obtain the size of the image set ng as follows,
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1 # ldm/models/diffusion/ddpm.py#L865-L868
2 def get_group_data(self,img,txt):
3 b,c,h,w = img.shape
4 ng = h//w
5 assert h==w*ng
6 img = img.view(b,c,ng,w,w)
7 img = img.transpose(1,2).reshape(b*ng,c,w,w)
8 txt = reduce(lambda

a,b:a+b,[t.split("<|split|>") for t in
txt])

,!
,!

9 return img,txt,ng
10 def shared_step(self, batch, **kwargs):
11 k1,kc=self.first_stage_key,self.cond_stage_key
12 assert kc=='txt'
13 batch[k1],batch[kc],ng =

self.get_group_data(batch[k1]),!
14 x, c = self.get_input(batch,

self.first_stage_key),!
15 loss = self(x, c)
16 return loss
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1https://github.com/CompVis/stable-diffusion

Joint-image diffusion models. The proposed joint-
image diffusion model can be easily implemented based on
a single-image diffusion model with a few simple modifica-
tions as follows,
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1 # ldm/modules/attention.py#L211C15-L215
2 # ng: size of the image set
3 def _forward(self, x, context=None,ng=None):
4 b,l,c = x.shape
5 if ng is not None:
6 x = x.view(-1,ng*l,c)
7 x = self.attn1(self.norm1(x)) + x
8 if ng is not None:
9 x = x.view(b,l,c)

10 x = self.attn2(self.norm2(x), context=context)
+ x,!

11 x = self.ff(self.norm3(x)) + x
12 return x
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Personalization as inpainting. As described in Sec. 3.3
of the paper, we cast the personalized generation problem
into an inpainting task. In training, the inpainting masks are
generated randomly. First a binary random vector ng mask
is sampled with every bit set to zero or one with equal prob-
ability. Then a mask of the same spatial size as the in-
put image is constructed by replicating ng mask alone the
height and width dimensions. The actual input fed into the
U-Net is the concatenation of the mask mask, noisy image
x, and masked clean image x0*(1-mask). The key im-
plementation can be found in the following code snippet.
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1 # ldm/modules/diffusionmodules/openaimodel.py
2 #L730-L730
3 bs=x.size(0)
4 if ng_mask is None:
5 ng_mask =

th.empty(bs,device=x.device).bernoulli_(),!
6 mask = ng_mask[:,None,None,None]
7 x0 = x0*(1-mask)
8 mask = mask.expand(-1,-1,*x0.shape[-2:])
9 x = th.cat((x,x0,mask),1)

10 h = x.type(self.dtype)
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At test time, x0 is the concatenation of all input images and
an all-zero image. The corresponding elements in ng mask
are set to 0 for the input images and 1 otherwise.

Synthetic same-subject (S3) dataset. Algorithm 1 de-
scribes the process of training data generation (Fig. 3 in the
paper) in details. Please note that we use the term instance
segmentation for simplicity, however, in our implementa-
tion, we combine an object detection model [4] and a seg-
mentation model [2] to separate object instances rather than
using an actual instance segmentation model. The object-
centric prompts (GPT(l, object) in Algorithm 1) are gener-
ated by instructing ChatGPT to generate details of an object



Table 1. Quantitative comparisons on the unique subject test set.

Method CLIP-T (↑) CLIP-I (↑) MCLIP-I (↑) DINO (↑) MDINO (↑)
BLIP Diffusion [3] 0.2851 0.8107 0.8234 0.6091 0.6018
ELITE [5] 0.2193 0.6082 0.6430 0.1862 0.2156
JeDi 0.2856 0.8697 0.8838 0.7934 0.7926

l, and the scene-centric prompts (GPT(l, scene)) in Algo-
rithm 1) are generated by instructing it to describe a scene
involving the object l. The list of object names used in our
implementation can be found in the attached text file.

Algorithm 1: Generating the S3 dataset.
1: Input: A list of object names L;
2: A text-to-image model G;
3: A text-based inpainting model GI ;
4: ChatGPT GPT;
5: An instance segmentation model S;
6: CLIP image model CLIP;
7: Output: a database X of image sets
X = {X1, X2, ..., XP } where Xp = {x1, x2, ..., xNp

}
is a set of images share a common subject;

8: X ← ϕ;
9: for l in L do

10: Generate an object-centric prompt
to ← GPT(l, object);

11: Generate an image x0 ← G(to);
12: Extract object instances from x0:

{x̂1, x̂2, ..., x̂K} ← S(x0);
13: Construct an affinity matrix

A,Aij ← CLIP(x̂i, x̂j);
14: Construct an adjacent matrix M,Mij ← 1 if

Aij > 0.95 else 0;
15: Find connected components I ← {I1, I2, ..., IP } of

the graph represented by M ;
16: for Ip in I do
17: X ← ϕ;
18: for i in Ip do
19: Generate a scene-centric prompt involving

object name l: ts ← GPT(l, scene);
20: Paste the object instance image x̂i at a random

location in an empty image x;
21: Inpaint the unknown area in x: x← GI(x, ts);
22: X ← X ∪ {x};
23: end for
24: X ← X ∪ {X}
25: end for
26: end for

Evaluation metric. We use the CLIP ViT-B/32 to com-
pute CLIP-T, CLIP-I and MCLIP-I. We use DINO VIT-S/16
to compute DINO and MDINO. We use one input image
per subject for comparison with finetuning-free methods,
and average the pair-wise scores to all real images of the
same subject and over all possible choices of the input im-

age. For comparison with finetuning-based methods, we
randomly select three input images. In ablation studies we
use one randomly selected input image for each subject and
only compute the scores using input/output pairs by default
unless stated otherwise.

2. Additional Experiments

2.1. Additional Results

Fig. 4 shows additional personalized generation results on
real-world human and object images. Our method can gen-
erate high-quality images with diverse content while pre-
serving the key visual features of the subjects in input im-
ages. Although the model is not trained on human-specific
data, it can still generate reasonable results for human sub-
jects, as shown in the second and third row of Fig. 4.

2.2. Comparison with State-of-the-Art Methods

Fig. 5 provides additional visual comparisons with
finetuning-based methods DreamBooth (DB) and Cus-
tomDiffusion (CD). Finetuning-based methods suffer from
the overfitting issue and might fail to preserve the subject
identity. For common subjects, they tend to extensively
copy from the reference images, adding only minor adjust-
ments to match the given text, e.g. in the first example, for
the prompt a backpack in the snow, DreamBooth nearly
replicate a reference image with slight snow patterns added
in the bottom. For unique subjects, the finetuning-based
methods often fail to preserve the distinctive features, e.g.
the cartoon character in the fourth row. This is because
these methods use the loss on retrieved or generated im-
ages of similar subjects as regularization during finetuning.
For unique and rare objects, these images can be visually
distinct from the reference images and interfere the model
from memorizing the custom concept.

To further demonstrate the advantage of our methods
for challenging cases, we collect a new test set containing
unique subjects with only single input image for each sub-
ject. Most the input images are from Reddit AI Art chan-
nel2. Fig. 6 visualize the input images. The first five rows
in Fig. 7 compare the results of our method to state-of-the-
art finetuning-free methods BLIP-Diffusion (BLIPD) and
ELITE on the unique subject test set. We also include the
results on common subjects from DreamBooth test set in the
last two rows for comparison. It can be seen that BLIPD and
ELITE can produce reasonable results for common subjects

2https://www.reddit.com/r/aiArt/



such as the dog of a typical breed and a common stuffed an-
imal (row 6-7). However, for unique subjects, their results
hardly resemble the subject from the reference image (row
1-5). In contrast, our method can faithfully capture the key
visual features of the subject. The advantage of our method
is also clearly reflected in the quantitative results in Table 1,
where our method outperforms ELITE and BLIP-Diffusion
by a large margin.

2.3. Additional Analysis

Image guidance. As we have discussed in the paper, the
use of image guidance can significantly improve the faith-
fulness to the input images. This is also supported by the
visual comparison in Fig. 3 (column 4-5).

In our main experiments in the paper, we use a simple
strategy for image guidance where both the image and text
input are set to null for unconditional inference. Here we
discuss a more flexible guidance strategy to model trade-
off between image alignment and text alignment. The score
function with flexible image guidance is as follows,

ϵ̃(xt, x̂,M) = ϵ0+λ1(ϵ
1− ϵ0)+λ2[ϵθ(xt, x̂,M)− ϵ1],

(1)
where ϵ0 = ϵθ(xt,0,M) represents the unconditional
score when the text prompt and all reference images are set
to null; ϵ1 represents the partially conditional score when
either the text prompt or reference images are kept. We can
compute the partial conditional score ϵ1 using image con-
ditioning to emphasize text alignment, or text conditioning
to emphasize image alignment. We call these two options
text first and image first strategies, respectively. Table 2 re-
ports the quantitative results based on different strategies
averaged over a varying guidance scale in [1.5, 10]. It can
be seen that the text first strategy yields higher DINO and
MDINO scores, indicating better image alignment. Image
first strategy yields a higher CLIP-T score, which indicates
better text alignment.

Table 2. Quantitative results with different guidance strategies av-
eraged over a varying guidance scale in [1.5, 10].

Strategy Text only Joint Image first Text first

DINO 0.4652 0.7268 0.6558 0.7508
MDINO 0.5922 0.8384 0.7863 0.8527
CLIP-T 0.3259 0.3013 0.3156 0.2853

We can also adjust the ratio between the guidance scale
of image condition and text condition for more flexible per-
sonalized generation. Fig. 2 visualize the change of DINO
and CLIP-T scores with the varying ratio. We can see that
the use of image guidance is important. Using only text
guidance (Text only in Fig. 2) yields low DINO score, indi-
cating low resemblance to the custom subject. By varying
the ratio of text and image guidance scales we can balance
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Figure 2. Effect of varying the ratio between the guidance scales
for image and text guidance. X-axis: CLIP-T; Y-axis: DINO.

between subject identity preservation and text alignment.
We found that the simple joint guidance strategy (Joint in
Fig. 2) usually gives good balanced results.

Table 3. Quantitative comparison with three baseline models.

Model CLIP baseline Concate. baseline Learned baseline JeDi

DINO 0.3411 0.3379 0.7065 0.7501
MDINO 0.4394 0.4292 0.7740 0.8639
CLIP-T 0.3325 0.3247 0.3015 0.3020

Comparison with baseline models. We have discussed
a CLIP-encoder baseline in the paper (CLIP baseline). Here
we include the comparison to another two baseline models.
Concate baseline: the input images are concatenated to the
noisy images to be fed into the UNet. Learned baseline:
similar to SuTI [1] where an learnable encoder is used to
extract a feature vector from the input images. All models
are trained on the same training data described in Sec. 4 of
the paper and are based on the same StableDiffusion v1.4
backbone for fair comparison. Table 3 reports the quanti-
tative comparison results and the visual comparison can be
found in Fig. 3 (column 1,2,3,5). The results indicate that
our method significantly outperforms all baseline models
in terms of image alignment, as evidenced by considerably
higher DINO and MDINO scores.

Training data identity similarity. Table 4 reports the
average CLIP and DINO scores on training samples over
the 1,000 ImageNet categories, which indicates a high over-
all identity similarity for a wide array of categories. For
context, we also show the scores on real images from the
DreamBooth test set, which has a slightly higher identity
similarity but covers much less categories than our dataset.

Subjects Categories CLIP-I (↑) DINO (↑)

S3 dataset 1.6M ∼ 2K 0.849 0.751
Real images 30 15 0.885 0.774

Table 4. Training data statistics.

Quantitative results with more input images. Although
our method does not have an inherent constraint on the num-
ber of inputs, for simplicity, we only use 1-3 input images



in the current implementation. We find that our method still
outperforms DB and CD, even when they are finetuned with
the maximum available reference images in the test set (4-6
images), as shown in Table 5. We will add the experiments
with more reference images, e.g. 10, in the revised version.

Table 5. Comparison to DB and CD with the maximum available reference images.

CLIP-T CLIP-I (↑) MCLIP-I (↑) DINO (↑) MDINO (↑)
DB 0.2971 0.8025 0.8736 0.6226 0.7175
CD 0.3071 0.7864 0.8586 0.6198 0.7011

Ours (1 input) 0.3040 0.7818 0.8764 0.6190 0.7510
Ours (3 inputs) 0.2932 0.8139 0.9011 0.6791 0.8037

Inference cost. The inference cost is comparable to other
methods when N is small (reported in the table below).
When N is substantially larger, e.g. a database, we can re-
duce the inference cost by first finetuning the model on the
database, and then retrieving the few images closest to the
text prompt to be the actual test time input (please refer to
the future work section).

Table 6. Inference time for one diffusion step on one A100 GPU.

Method BLIPD ELITE Ours

Time (second) ↓ 0.0492 0.0719 0.0564

3. Limitations and Future Work

A limitation of JeDi is that it needs to process all refer-
ence images at inference time. This enables finetuning-free
personalization but leads to efficiency drop when the num-
ber of reference images increases. Therefore, JeDi is more
suitable for subject image generation given a few reference
images, and are less efficient in adapting to a new domain
given a large database of reference images. A potential so-
lution is to combine JeDi with finetuning-based methods.
When a large database of reference images are available,
we can first finetune JeDi on the database. Then at infer-
ence time, given a text prompt, we retrieve the most relavent
images from the database to use as the test-time inputs to
JeDi. Another limitation is that the current implemen-
tation cannot be directly applied for multi-subject image
generation. There are two possible ways to extend JeDi
for multi-subject generation: (1) generate multiple subjects
sequentially through inpainting, and (2) construct a multi-
subject S3 dataset by combining multiple sets of subjects.
We will explore these directions in future work.
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Input CLIP-baseline Concat.-baseline Ours w/o IG Ours

A dog in a 
chief’s outfit

A stuffed animal 
on the beach

Learned-Enc-baseline

Figure 3. Visual comparisons to baseline models.
A backpack Georgia O'Keeffe style painting by a campfire in the woods A purse on top of a white rug on the beach

A person in a flashy disco outfit in the style of Edvard Munch.

A person in a green cloak in a a firefighter's outfit A person as Neo in the matrix movie on a snowy mountain peak

A car in times square in the jungle A plushie wearing headphones drawing water into a bucket

A unicorn plushie 3d render geometric style wearing Victorian-era clothing, reading

A toy shiny in front of a medieval castleA backpack inside a candlelit tavern anime avatar

Figure 4. Personalized generation results for human and real-world objects.



A backpack with a mountain in the backgroundin the snow

A stuffed animal on top of green grass with sunflowers around itwith a blue house in the background

A dog wearing a santa hatwith a city in the background

A cartoon in the junglefloating on top of water

Input DB CD Ours DB CD Ours

Figure 5. Visual comparison with finetuning-based methods on DreamBooth test set. DreamBooth (DB) and CustomDiffusion (CD) tend
to overfit for common subjects and fail to capture the visual features of unique subjects.

Figure 6. Input images in the unque subject test set.



An animal on a cobblestone streeton top of a dirt road

A couch in a high school hallwayat the entrance of a circus tent

A puppy dressed in a green cloakA koala in the style of

A robot A koala in the style offloating on top of water

A toy cow in the snowin a graduation gown

A purpleA toy

A dog wearing a rainbow scarf

on a cobblestone street

wearing a yellow shirt

Input ELITE BLIPD Ours1 ELITE BLIPD Ours1

Figure 7. Visual comparison with finetuning-free methods on the unique subject test set (row 1-5) and on Dreambooth test set (row 6-
7). BLIP Diffusion and ELITE can generate reasonable results for common subjects but often fail in challenging cases involving unique
subjects. In contrast, our method can handle challenging cases and generate personalized images with well-preserved details.
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