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Summary
As outlined in the main body of our manuscript, this sup-
plementary material encompasses specific components: 1.
Elaboration on the customized controlled reverse denoising
diffusion model, detailing its methodology and implemen-
tation, 2. Details of the U-Net-like “hourglass” architecture
embedded within the conditioning function Φ, 3. Compre-
hensive visual comparisons demonstrating various spectral
unmixing strategies, and 4. Further visual comparisons, en-
compassing both simulated and real noise scenarios.

1. Details of Controlled Reverse Diffusion
Due to space limitations, the main body of our manuscript
focuses solely on the essential procedures involved in the
controlled reverse denoising diffusion model. In this section,
we aim to delve deeper into the intricacies of the model by
presenting additional comprehensive details:
Controlled Reverse Diffusion Process. A match at state
At indicates that, given the specific noise schedule β, there
exists at least one potential sample from the posterior at state
At in the baseline unconditional generation process that
closely approximates the provided input A′. Consequently,
a more precise image can be sampled at state A0 through an
iterative reverse process denoted as p(A0|At) with condition
Ac. With the matched state t and trained ϵθ(·, t), reverse
diffusion process [5] starting from At with noisy abundance
At = A′, and the reverse process is updated as follows:

At−1 =
1

√
αt

(
At −

1− αt√
1− ᾱt

ϵθ(At, t)

)
+

√
1− αtzt, (1)

where zt ∼ N (0, 1), t ∈ [T ]. As [10, 12], we formulate
the ancestral sampling process (1) as the discretization of
reverse Stochastic Differential Equations (SDE).

dA =
[
f(A, t)− g2(t)∇A(t) log pt(A(t))

]
dt+ g(t)dw̄,

(2)

Recent work [10, 12] shows that as the total diffusion step
”T ” goes infinity and the forward series {At}Tt=1 becomes
{A(t)|t ∈ [0, 1]} indexed by continuous time variable,
the diffusion process A(t) is actually the solution to an
Itô SDE: dX = f(A, t)dt + g(t)dw, where w represents
the standard Wiener process. For example, the diffusion
process with transition distribution q(A(t)|A(t − 1)) =
N (A(t)|

√
α(t)A(t − 1), (1 − α(t))I) corresponds to the

SDE as follows

dA = −1

2
(1− α(t))dt+

√
1− α(t)dw. (3)

In this case, f(A, t) = −1

2
(1 − α(t)) and g(t) =√

1− α(t). Also, the reverse process is a solution to an
SDE:

dA =
[
f(A, t)− g2(t)∇A(t) log pt(A(t))

]
dt+ g(t)dw̄,

(4)

Viewed through the lens of SDE, the process of sampling
from p(A(0)) can be achieved through an appropriate dis-
cretization of Equation (4). Consequently, in the context
of HSI denoising, we aim to leverage the learned distribu-
tion pertaining to A from a diffusion model. This model
inherently encapsulates the prior information of the image,
aiding in the restoration of denoised HSI from the observed
noisy image and a clean approximation. Together with con-
dition Ac and the estimated endmembers Ey from STU as
conditioning variables, we can reformulate the reverse SDE
concerning A as

dA =
[
f(A, t)− g2(t)∇A(t) log pt(A(t)|Ac, Ey)

]
dt+ g(t)dw̄.

(5)

where f(A, t) = −1

2
(1− α(t)) and g(t) =

√
1− α(t), w̄

is the reverse of the standard Wiener process. The gradient
∇A(t) log pt(A(t)) is commonly referred to as the ’score
function’ of A(t). Using Bayes’s rule, the score function can
be separated into two parts

∇A(t) log pt(A(t)|Ac, Ey)

=∇A(t) log pt(A(t)) +∇A(t) log pt(Ac, Ey|A(t)). (6)

The first part can be derived under the general uncondi-
tional framework. However, the second part is intractable,
since only the relation between Ac, X and p(A(t)|A(0)) are
known. Following [3, 10], we approximate the second term
as

∇A(t) log pt(Ac, Ey|A(t))

=∇A(t) log

∫
p(Ac, Ey|A(0))p(A(0)|A(t))dA(0)

≈∇A(t) log p(Ac, Ey|Â0), (7)

where Â0 is the expectation of A(0)|A(t) by Tweedie’s
formula:

Â0(A(t)) = E[A(0)|A(t)]

=
1√
ᾱt

[
A(t) + (1− ᾱt)∇A(t) log pt(A(t))

]
. (8)
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Figure 1. Visual comparison of HSI denoising methods on KAIST dataset.

The term log p(Ac, Ey|Â0) is much more available since
Â0 can be seen as an approximation to A, by using compu-
tational relaxation [10], it can be relaxed and formulated as,

log p(Ac, Ey|Â0) = log p(Ac, Ey|Â0)

≈− γ∥Ac− Â0 ×3Ey∥F , (9)

where γ is trade-off parameter.
Then, we discretize the reverse SDE (5) using the form

of ancestral sampling process (1):

At−1 =
1

√
αt

(
At + (1− αt)∇A(t) log pt(A(t)|Ac, Ey)

)
≈ 1

√
αt

(
At −

1− αt√
1− ᾱt

ϵθ(At, t)

)
+
√
1− αtzt

− η∇At∥Ac − Â0 ×3 Ey∥F , (10)

where η =
1− αt√

αt
γ. At time t, we can see that the sam-

pling consists of two parts. The first part is equal to sam-
pling from parameterized p(At−1|At) with fixed variance√
1− αt. The second part pushes the sample towards the

consistent form with constraint on abundance. See supple-
mentary materials for the detailed inference of (5) and (10).

Finally, the HSI is reconstructed through unmixing re-
construction, achieved by mixing the diffusion generative
adjusted abundance map with the spectral endmembers,

Xdiff = Â0 ×3 Ey. (11)

2. U-Net-like “hourglass” architecture within Φ

In the proposed Diff-Unmix framework, Φ functions as the
conditioning mechanism, introducing conditions (Ac, Ey)
into the denoising diffusion model’s sampling process. To
expedite this sampling process, we adopt a U-Net-inspired
“hourglass” architecture [11]. Please refer to Figure 2 for a
comprehensive representation of the network architecture
used to train Φ.

3. Comparison on Spectral Unmixing Strategy
In evaluating the effectiveness of the STU network, we con-
duct a visual analysis of the decomposition process. It’s im-
portant to recognize that spectral unmixing inherently lacks
an exact optimal solution, presenting an ill-posed problem. A
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Figure 2. The network architecture within conditioning function Φ.
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Figure 3. Comparison of different spectral unmixing strategies: STU and tensor SVD (TSVD).
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Figure 4. Visual comparison of HSI denoising methods on Toy dataset.

critical consideration involves ensuring consistent endmem-
ber information across varying noise levels. For comparison,
we utilize Singular Value Decomposition (SVD) and DNN
techniques for unmixing, as illustrated in Figure 3. The re-
constructed HSI resulting from the unmixing reconstruction,

achieved by blending the tensor SVD decomposed abun-
dance map with spectral endmembers, notably differs from
the original reference HSI. Conversely, STU demonstrates
improved HSI reconstruction through its unmixing process,
effectively blending the abundance map and the spectral
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Figure 5. Results on Urban with real-world noise including stripes, deadlines, atmospheric interference, water absorption, and other
unidentified sources. One can see that our Diff-Unmix adeptly mitigates mixed noise, ensuring the retention of fine-grained details.

endmembers it decomposed.

4. Additional Visual Comparison

Figures 1, 4, and 5 offer additional visual comparisons be-
tween the proposed Diff-Unmix and state-of-the-art (SOTA)
methods. Evidently, Diff-Unmix excels in challenging sce-
narios, such as patches with severe noise or specific condi-
tions like the lower-right context, adeptly reconstructing intri-
cate image details and textures—areas where SOTA methods
falter. However, akin to numerous applications of DDPM,
Diff-Unmix does possess the propensity to generate extra-
neous details (over-enhancement) owing to its generative
nature. For instance, observe the cube artifact within the
Toy dataset depicted in the bottom of Figure 1.
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