
Supplementary Material

The supplemental material is structured as follows:
1. We first provide a detailed introduction of the various diffusion models of the text and medical image modalities (CT,
MRI, X-ray) in Appendix A.
2. We list all the pre-train tasks with corresponding datasets in Appendix B.
3. We also give more detailed introductions of the 5 fine-tuning tasks with 10 datasets in Appendix C.
4. We then provide more details of the LDM model architecture and configuration of four medical modalities in Appendix D.
5. To elucidate the effectiveness of the multi-flow training with the central alignment, we conduct more ablation studies of
the multi-flow training strategy in Appendix E.
6. We also showcase the efficient-cost performance of our model across various training settings in Appendix F.
7. Lastly, we discuss the influence of different hyperparameters of the training process in Appendix G.

A. Introduction of the Diffusion Model
Following Versatile Diffusion [24], we employ the widely embraced UNet [19] incorporating cross attentions as the primary
architecture for our diffusion model. A portion of the UNet aligns with Stable Diffusion [18], utilizing residual blocks for
image data layers and incorporating cross-attention for contextual layers handling both text and image information.

A.1. Text Diffusion Model

The autoencoder of the text diffusion model is OPTIMUS [13] with the BERT [5] encoder and GPT-2 [16] decoder. It can
transform sentences bidirectionally, generating 768-dimensional latent vectors from them, which follow a normal distribution.
For the denoising UNet module, we adopt the 1D convolution in the residual blocks [24]. We use both CLIP [17] encoders
as the prompt encoder CT and context encoder VT of the text modality.

A.2. Image Diffusion Model

The diffusion models for the three medical image modalities (CT, X-ray, MRI) employ the same structure which follows
the Stable Diffusion 1.5 [18] and is initialized with the same weights. This way can transfer the knowledge and outstanding
generation fidelity trained on extensive high-quality image datasets from Stable Diffusion [18] to our models. Same as the
text diffuser, we also adopt the CLIP [17] as the prompt encoder and context encoder of the CT, MRI, and X-ray modalities.

B. Pre-train Tasks with Datasets

Tasks Datasets Sample Numbers
Text→Xray, X-ray→Text, Contrastive MIMIC-CXR [12] 227k
Text→CT, CT→Text, Contrastive MedICat [21] 131k
CT→MRI, MRI→CT, Contrastive Brain tumor MRI and CT scan [2] 4.5k

Table A1. The pre-training tasks with corresponding datasets and the training total numbers of the samples. Contrastive: the contrastive
learning for alignment of the prompt encoders.

In Table A1, we outline the training objectives for MedM2G, encompassing tasks such as medical chest X-ray report
generation, medical MRI synthesis, medical multi-modal translation, and contrastive learning for aligning prompt encoders.
Table A1 furnishes a summary of the datasets, tasks, and sample numbers. The pre-training datasets are collected for the
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following domains: the medical image-text, text-Xray, Xray-CT, CT-MRI, which all follow the central alignment strategy for
pre-training.
MIMIC-CXR MIMIC-CXR [12] is an extensive dataset containing 377, 110 chest X-rays linked to 227, 827 imaging studies.
The data is collected from the Beth Israel Deaconess Medical Center. The images come with 14 labels generated through
the application of two natural language processing tools to the corresponding free-text radiology reports. We adopt the
MIMIC-CXR to align the text and X-ray modalities, as well as the text→X-ray and X-ray→text generation tasks.
MedICat MedICat [21] is a collection of medical images presented in context, comprising 217, 000 images sourced from
131, 000 open-access biomedical papers. The dataset encompasses captions, and inline references for 74% of the figures, and
includes manually annotated subfigures and subcaptions for a subset of the figures. This dataset includes CT scans with text
reports, adopted for the aligning of the text and the CT modalities (Text→CT and CT→Text generation tasks).
Brain tumor MRI and CT scan Brain tumor MRI and CT scan [2] is a novel brain tumor dataset containing 4, 500 2D
MRI-CT slices. Paired for MRI and CT scans, the dataset comprises scan data from 41 patients, with 2D slices extracted
from the 3D volume. After registration, the 3D MRI and CT scans can be represented as a 237 × 197 × 189 matrix. To
ensure compatibility between training models and inputs, each 3D image is sliced, and 4, 500 pairs of 2D MRI-CT images
are selected as the final training data. It is adopted for the alignment and generation between the CT and MRI modalities.

By adopting the multi-flow central alignment training approach, this alignment method leads to a natural and effective
alignment even with limited paired data across all modalities. Significantly, it enables the implicit alignment of medical
multi-modalities (CT, MRI, X-Ray) within the same space, facilitating versatile generation capabilities even in the absence
of well-paired data.

C. Fine-tuning Tasks with Datasets

Tasks Datasets Modality Sample Numbers

Medical Report Generation MIMIX-CXR [12] Text, X-ray 2,227
IU X-ray [4] Text, X-ray 3,955

Medical Image Generation
Chest X-ray [23] X-ray, Text 112,120
SLIVER07 [9] CT 4,159

ACDC [1] MRI 1,902

MRI synthesis BraTS 2020 [2] MRI 4000
IXI [10] MRI 5500

MRI-CT translation Gold Atlas male pelvis [15] MRI,CT 1350

Chest X-ray generation MIMIC-CXR [12] X-ray, Text 2,227
Chest X-ray [23] X-ray, Text 108,948

Table A2. The 5 medical fine-tuning tasks with 10 corresponding datasets, modality, and the total sample numbers.

C.1. Medical Report Generation

MIMIX-CXR The MIMIC-CXR dataset [12], contains a comprehensive set of X-ray images, consisting of 377,100 radiology
images focused on the chest region, along with 227,835 accompanying reports from patients. Following RoentGen [3], we
adopt the official MIMIC split of the test set for the Chest X-ray generation task, which includes 2, 227 Xray-report samples.
We employ the training subset of MIMIC-CXR for fine-tuning the medical report generation task and evaluate the test subset.
The batch size for MIMIC-CXR is set to 64 and the maximum output report length is set to 50.
IU X-ray The IU X-ray [4] is the pre-dominant medical dataset employed for the medical report generation task, which con-
tains 7, 470 chest X-ray images and 3, 955 related clinic reports from 3, 955 patients. Radiologists have provided annotations
for MeSH in this dataset. The dataset comprises free-text radiology reports from clinical practices, encompassing multiple
sections. We follow the original data split rates and set the batch size to 16 for the IU X-ray training. We set the maximum
output report length of the IU X-ray [4] to 45.

C.2. Medical Image Generation

Chest X-ray The ChestX-ray [23] dataset consists of 112, 120 chest X-ray images in PNG format, each with a resolution
of 1024 × 1024 pixels. We follow the original data splits of 70%/10%/20% train/val/test for the medical image generation
tasks.



SLIVER07 For the SLIVER07 [9]dataset, we utilized 20 scans available in the training dataset. Each slice was converted to
a PNG image without any additional preprocessing. The dataset comprises a total of 4, 159 images, each with a resolution of
512× 512 pixels.
ACDC The ACDC [1] dataset consists of 150 cardiac cine-magnetic resonance imaging (MRI) exams. We utilized the
training dataset, which includes 100 exams. The images were rescaled to the range [0, 255] using SimpleITK and zero-
padded. Each slice was then converted into a 2D PNG image. In total, this dataset comprises 1, 902 images, each with a
resolution of 512× 512 pixels.

We all follow the original fine-tuning settings which undergoes end-to-end training with Adam using standard parameters
(β1 = 0.9 and β2 = 0.999). Training occurs in mini-batches of size 16, with an initial learning rate set at 0.001. The learning
rate is decayed by a factor of 10 whenever the validation loss reaches a plateau after an epoch.

C.3. MRI Synthesis Task

BraTS The BraTS [2] dataset analyzed T1, T2, and Fluid Attenuated Inversion Recovery (FLAIR) weighted brain MR images
from 55 patients with gliomas, partitioned into training, validation, and test sets with 25, 10, and 20 subjects, respectively. The
T2 and FLAIR volumes were registered to the T1 volume in the validation/test set. For each subject, 100 axial cross-sectional
slices containing brain tissue were selected. Different scanning protocols were employed by multiple institutions.
IXI The IXI [10] dataset analyzed T1, T2, and Proton Density (PD) weighted images from 40 healthy subjects, with
(25, 5, 10) individuals retained for (training, validation, testing). T2 and PD volumes were registered to the T1 volume
in the validation/test set. For each subject, 100 axial cross-sectional slices containing brain tissue were selected. The scan-
ning parameters for T1 were TE=4.6ms, TR=9.81ms, for T2, TE=100ms, TR=8178.34ms, and for PD images, TE=8ms,
TR=8178.34ms. The common spatial resolution was 0.94× 0.94× 1.2mm3.

The batch size is set to 8, and the learning rate is set to 9.6e−5. Noise variances, ranging from β1 = 10e−4 to βT = 0.02,
are employed.

C.4. MRI-CT Translation

Gold Atlas male pelvis The pelvic [15] dataset analyzed T1 and T2-weighted MRI as well as CT images of 15 subjects,
divided into (9, 2, 4) individuals for (training, validation, testing). T1 and CT volumes were registered to the T2 volume in
the validation/test set. For each subject, 90 axial cross-sectional slices were selected. For T1 scans, specifications included
TE=7.2ms, TR=500− 600ms, with a resolution of 0.88× 0.88× 3mm3, or TE=4.77ms, TR=7.46ms, with a resolution of
1.10×1.10×2mm3. For T2 scans, specifications included TE=97ms, TR=6000-6600ms, with a resolution of 0.88×0.88×
2.50mm3, or TE=91-102ms, TR=12000-16000ms, with a resolution of 0.88 − 1.10 × 0.88 − 1.10 × 2.50mm3. For CT
scans, specifications included a resolution of 0.10× 0.10× 3mm3 with Kernel=B30f or a resolution of 0.10× 0.10× 2mm3

with Kernel=FC17. To accelerate the synthesis task for MRI scans, 4× retrospective undersampling was performed on fully
sampled MRI data in 2D to obtain low-resolution images with a 16x acceleration rate. The training batch size is set to 64.

C.5. Chest X-ray Generation Task

MIMIC-CXR We assess the quality and clinical effectiveness of the generated chest X-rays and reports across various
dimensions. Standard evaluation metrics for generative models, including FID and BLEU, are employed. A total of 208,534
studies, each containing a maximum of 3 chest X-rays with common views (PA, AP, and LATERAL3), are selected for
evaluation. The dataset follows the official split of MIMIC-CXR (training set: 204,102, validation set: 1,659, test set: 2,773).
Chest X-ray The ChestX-ray [23] includes 108, 948 frontal-view X-ray images belonging to 32,717 distinct patients. The
dataset is annotated with eight disease labels extracted from radiological reports using natural language processing. Each
image can have multiple labels. We follow the original data splits of 70%/10%/20% train/val/test for the chest X-ray
generation task. The batch size is set to 16 with an initial learning rate of 0.001. We adopt other Adam optimizer with β1 =
0.9 and β2 = 0.999.

D. Model Architecture and Configuration
We provide more details of the model architecture and configuration in Table A3. Following CoDi [22], the diffusion models
of four modalities (Text, CT, MRI, X-ray) are all based on the UNet structure with specific settings. The λ1 in Eq. 4 is set to
5e− 3. The experiment for the influence of λ1 is conducted in Appendix G.

More comparisons of MRI synthesis tasks (T1→T2, PD→T1) are listed in Table A4. Detailed comparative experiments
demonstrate that our model excels in generating intricate brain sulci and tumor boundaries, effectively preserving anatomical
structure.



Modality Text LDM X-ray LDM CT LDM MRI LDM
Hyperparameter
Architecture LDM LDM LDM LDM
z-shape 768 ×1×1 4×64×64 4×64×64 4×64×64
Channels 320 320 320 320
Depth 2 4 4 4
Channel multiplier 1,2,4,4 1,2,4,4 1,2,4,4 1,2,4,4
Attention resolutions 64,32,16 64,32,16 64,32,16 64,32,16
Head channels 32 32 32 32
Number of heads 8 8 8 8
CA embed dim 768 768 768 768
Embedding Layer dim 768 768 768 768
CA resolutions 64,32,16 64,32,16 64,32,16 64,32,16
Autoencoders Optimus AutoKL AutoKL AutoKL
Weight initialization Versatile Diffusion SD-1.5 SD-1.5 SD-1.5
Parameterization ϵ ϵ ϵ ϵ
Learning rate 5.e-05 2e-05 1e-06 1e-06
Total batch size 1024 256 128 128
Diffusion Setup
Diffusion steps 1000 1000 1000 1000
Noise schedule Linear Linear Linear Linear
β0 0.00085 0.00085 0.00085 0.00085
βT 0.012 0.012 0.012 0.012
Sampling Parameters
Sampler DDIM DDIM DDIM DDIM
Steps 50 50 50 50
η 1.0 1.0 1.0 1.0
Guidance scale 2.0 2.0 2.0 2.0

Table A3. The architecture and configuration of different diffusion models. SD: Stable Diffusion. CA: Cross-attention layer. Embedding
Layer: the embedding layer Femb.

Methods
BRATS IXI

T2+T1+FLAIR→T1ce T2+T1ce+T1→FLAIR T2+T1→PD
PSNR SSIM PSNR SSIM PSNR SSIM

MM-GAN [20] 26.30±1.91 91.22±2.08 24.09±2.14 88.32±1.98 30.61±1.25 95.42±1.78

Hi-Net [27] 27.02±1.26 93.35±1.34 25.87±2.82 91.22±2.13 31.79±1.66 96.51±2.23

ProvoGAN [25] 29.26±2.50 93.96±2.34 25.64±2.77 90.42±3.13 29.93±2.13 94.62±2.46

LDM [18] 25.61±2.48 89.18±2.55 23.12±3.16 86.90±3.24 27.36±1.96 91.52±2.16

CoLa-Diff [11] 29.35±2.40 94.18±2.46 26.68±2.74 91.89±3.11 32.24±1.86 96.95±2.61

ours 30.12±1.78 95.32±2.64 27.89±2.84 93.01±1.68 34.12±1.82 97.88±2.82

Table A4. The comparisons between our model MedM2G and advanced MRI synthesis models on BRATS and IXI datasets.

E. Ablation Study of Multi-flow Training Strategy
We conduct more ablation studies of multi-flow training in Table A5. It can be observed that models pre-trained on MIMIC-
CXR [12] achieve a significant improvement in medical image-text generation tasks. Additionally, with the incorporation
of the MedICat [21] pre-training dataset, accompanied by efficient-cost computational resources, the results of 5 generation
tasks, including X-ray, MRI, and CT, have seen further enhancement. Furthermore, the inclusion of paired MRI-CT data
has advanced the performance of unified generation across modalities, accompanied by a modest increase in computational
resources.

F. More computation Costs of Different Training Settings
We provide more detailed computation costs of different training settings in Table A8. We separately computed the pretrain-
ing time and the added model parameters for the three pretraining tasks in Table A1 and each multi-flow configuration. The



Pre-train
Dataset

MIMIC-CXR ACDC
MIMIC-CXR

(X-Ray generation)
BraTS2020

(T2+T1→PD)
Pelvic

T2→CT

Pre-training
time
/epoch

Add
Parameter

BLEU-1 BLEU-4 ROUGE L Fid(↓) Fid(↓) PSNR SSIM PSNR SSIM /h /M
MIMIC 0.389±0.009 0.129±0.011 0.283±0.012 20.13 3.1 33.76±2.12 97.41±1.87 27.22±0.23 88.68±1.49 0.7 46.4
MIMIC+MedICat 0.399±0.008 0.136±0.012 0.298±0.011 16.68 2.2 33.98±1.68 97.67±1.72 27.38±0.37 88.99±1.47 1.4 85.3
MIMIC+MedICat+MRI-CT 0.412±0.007 0.142±0.010 0.309±0.009 15.89 1.7 34.12±1.98 97.88±1.89 27.45±0.19 89.23±1.54 1.8 96.6

Table A5. The ablation study of the pre-training datasets. MRI-CT: Brain tumor MRI and CT scan dataset [2].

Methods
Pre-train
Datasets

Pre-train
samples

MIMIC-CXR ACDC MIMIC-CXR BraTS Pelvic
BLEU-1 BLEU-4 ROUGE L Fid(↓) Fid PSNR SSIM PSNR SSIM

VD [24]
original 700M 0.356±0.008 0.008±0.009 0.254±0.006 30.12 12.7 28.97±2.12 78.45±2.33 17.87±0.98 71.43±1.34

M+M+MC 598K 0.368±0.010 0.112±0.008 0.262±0.006 26.67 9.8 29.88±2.13 80.12±2.54 19.21±1.12 75.67±1.18

BIND [8]
original 2270K 0.362±0.006 0.101±0.009 0.259±0.011 32.14 14.6 27.66±1.45 71.12±1.87 15.43±1.13 65.38±1.88

M+M+MC 598K 0.373±0.005 0.109±0.011 0.265±0.007 28.34 11.2 28.34±2.22 75.34±2.32 18.78±1.05 69.23±1.97

CoDi [22]
original 512M 0.369±0.006 0.106±0.011 0.266±0.005 25.12 10.9 29.12±2.11 80.68±1.86 19.12±0.88 73.23±1.22

M+M+MC 598K 0.381±0.008 0.119±0.009 0.273±0.010 22.32 7.8 30.78±2.45 84.44±2.01 22.32±1.43 78.86±1.89

Ours M+M+MC 598K 0.412±0.007 0.142±0.010 0.309±0.009 15.89 2.7 34.12±1.98 97.88±1.89 27.45±0.19 89.23±1.54

Table A6. The comparison between MedM2G and advanced general multi-modal generative models. M+M+MC: Pre-training datasets of
MIMIC-CXR, MedICat and Brain tumor MRI and CT scan.

Text-to-Image Method
Dataset Fid(↓)

ChestXray14 ACDC SLIVER07
Stable Diffusion-1.4 [18] 20.13 35.32 38.76
CogView [6] 16.45 31.23 30.17
Versatile Diffusion [24] 11.43 26.67 24.39
LDM [18] 10.33 26.02 21.72
CoDi [18] 8.68 22.32 15.21
Make-a-Scene [7] 5.33 21.17 10.78
GLIDE [14] 2.89 20.19 8.45
Ours 1.84 15.89 6.89

Table A7. The comparison between MedM2G and advanced general text-to-image models across ChestXray, ACDC, and SLIVER07
datasets.

computation results demonstrate the superior efficiency of our model. Benefiting from the proposed central alignment strat-
egy, our model can achieve the unification of multiple medical modalities through multi-flow training, with a linear increase
in computing cost, avoiding significant computational resource consumption like others.

G. Influence of Hyperparameters
As shown in Table A9, A10 and A11, we demonstrate the influence of the various hyperparameters, including the depth of
the UNet, the cross-attention embedding dimensions in the UNet, the dimension of the embedding layer Femb in Section 3.4,
the scaling size of the CLIP prompt encoder for alignment, and the balancing hyperparameter λ1 in Eq. 4.
UNet Depth In Table A9, we separately investigate the influence of the depth of the UNet network on the experimental results
for the four modalities on the MIMIC-CXR [12] and ACDC [1] datasets. We set the depth to be 2− 5 layers, where the text
UNet achieved the best performance at a depth of 2, while CT, MRI, and X-ray all performed best when the depth was set to
4.
Cross-attention Embedding In Table A10, we investigate the impact of the cross-attention dimension in UNet. We conduct
experiments with three settings for the embedding dimension of cross-attention: 512, 768, and 1024. It is important to
note that, to align the four modalities (Text, CT, MRI, X-ray), the embedding dimension of UNET is uniformly set for all
modalities. The results indicate that the optimal performance is achieved when the embedding dimension of cross-attention
is set to 768.
Dimension of Embedding Layer In Table A10, we vary the dimension of the embedding layer Femb in Section 3.4 with
three settings. The best performance on downstream tasks is achieved when the encoding dimension for all four modalities



Training Settings
Pre-training time
/epoch

Add
Parameter

/h /M

Task1

Text→X-ray 0.2 12.1
X-ray→Text 0.2 11.7
Contrastive 0.5 16.8

Total 0.8 33.8

Task2

Text→CT 0.2 13.2
CT→Text 0.2 11.9

Contrastive 0.5 18.6
Total 0.7 38.4

Task3

CT→MRI 0.3 19.8
MRI→CT 0.3 18.7
Contrastive 0.4 25.4

Total 0.7 41.2
Single-flow(Task1) 0.8 33.8

Two-flow(Tasks1+2) 1.4 55.9
Three-flow(Task1+2+3) 1.8 96.6

Table A8. The computation costs of different training settings, including the pre-training tasks and the multi-flow strategies.

Modality Hyper
MIMIC-CXR ACDC

BLEU-1 BLEU-4 ROUGE L Fid(↓)

Text

2 0.410±0.009 0.141±0.009 0.310±0.011 15.86
3 0.407±0.007 0.135±0.010 0.303±0.011 16.67
4 0.405±0.008 0.133±0.011 0.306±0.009 16.45
5 0.404±0.009 0.132±0.010 0.304±0.008 16.16

CT

2 0.408±0.006 0.139±0.007 0.309±0.011 16.03
3 0.410±0.009 0.142±0.008 0.311±0.011 15.98
4 0.411±0.011 0.144±0.010 0.313±0.009 15.91
5 0.408±0.008 0.143±0.006 0.312±0.010 15.99

MRI

2 0.405±0.006 0.138±0.008 0.309±0.007 16.13
3 0.408±0.009 0.141±0.011 0.311±0.009 16.02
4 0.412±0.008 0.142±0.008 0.312±0.011 15.93
5 0.411±0.008 0.137±0.009 0.307±0.009 16.32

X-ray

2 0.412±0.012 0.141±0.014 0.308±0.011 16.28
3 0.415±0.011 0.143±0.011 0.308±0.009 16.07
4 0.416±0.010 0.147±0.009 0.315±0.007 15.82
5 0.415±0.011 0.145±0.009 0.312±0.008 15.96

Table A9. The influence of the depth of the four different UNet hyperparameters for text, CT, MRI, and X-ray modalities.

Hyperparameter Settings
MIMIC-CXR ACDC

BLEU-1 BLEU-4 ROUGE L Fid(↓)

CA embed
512 0.405±0.008 0.139±0.010 0.306±0.007 16.32
768 0.411±0.009 0.144±0.011 0.313±0.012 15.91
1024 0.408±0.008 0.141±0.007 0.309±0.009 16.12

Embedding layer
512 0.406±0.010 0.141±0.009 0.311±0.008 15.99
768 0.413±0.013 0.143±0.011 0.314±0.008 15.89
1024 0.409±0.007 0.138±0.006 0.312±0.008 16.04

CLIP scale size
ViT-B 0.412±0.011 0.142±0.009 0.312±0.010 15.93
Vit-L 0.419±0.008 0.151±0.009 0.324±0.011 14.89

Table A10. The influence of the dimension of the cross-attention embedding and the embedding layer Femb, and the CLIP scale size of the
prompt encoders.



Hyperparameter Dataset Fid(↓)
λ1 ChestXray14 ACDC SLIVER07
5e-04 2.89 16.78 7.32
5e-03 1.84 15.89 6.89
1e-03 1.99 16.12 7.02
1e-02 2.13 16.34 7.11

Table A11. The influence of the non-negative balancing hyperparameter λ1 in Eq. 4.

is set to 768.
CLIP Scale Size As shown in Table A10, we pre-train the prompt encoder of four modalities with the ViT-Base, ViT-Large,
and ViT-Huge settings. Our results demonstrate that the deeper and larger ViT model provides stronger improvements on the
corresponding fine-tuning datasets. In our paper, to maintain the same settings as other models for fair comparison, we adopt
the results of ViT-Base for comparison with other state-of-the-art models.
Non-negative Balancing Hyperparameter In Table A11, we explore the influence of the non-negative balancing hyperpa-
rameter λ1 in Eq. 4 across three medical image generation datasets ChestXray [23], ACDC [1], and SLIVER07 [9]. We ran
the experiment settings from 5e − 4 to 1e − 2 and found the best results for λ1 = 5e − 3, which is the same as the Barlow
Twins [26].
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