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A. Annotation Details
A.1. Platform Calibration & Synchronization

The MoCap system is calibrated via a specialized wand pro-
vided by the vendor. The cameras in the multi-camera sys-
tem are calibrated using ArUco cubes. These cameras are
attached with reflective markers to be tracked by the Mo-
Cap system. These calibration tools are shown in Fig. 1.
The two systems are time synchronized with software syn-
chronization tools bundled in the ROS2 [18].

A.2. Data Cleaning

In this section, we present a brief description of the pro-
cess used to clean the reflective marker positions captured
by the MoCap system, in preparation for subsequent ob-
ject pose and human pose computations. Inherent limita-
tions of the MoCap system inevitably lead to errors in the
reflective marker positions obtained: in extreme cases of
occlusion, the system may fail to detect and record some
markers; ghost markers may be included due to unwanted

Figure 1. Illustration of Platform Calibration Tools. The top is
the vender-provided calibration wand for the MoCap system. The
bottom are the ArUco cubes attached with reflective markers (cir-
cled in red). The ArUco patterns are for unifying the camera in the
multi-camera system, while the surface-attached reflective mark-
ers are used for unifying the cameras with the MoCap system.

environmental reflections; when two or more markers come
into close proximity, the system may incorrectly assign their
labels or falsely identify them as a single marker. These lim-
itations lead to the introducing of a manual mechanism for
cleaning and post-processing captured data.

The data cleaning procedure is composed of two compo-
nents: 1) the MoCap post-processing software; 2) a multi-
-view interactive editor. We invite three professional an-
notators for data cleaning. The annotators first sequen-
tially check the location of the captured reflective mark-
ers in the MoCap post-processing software [23]. They then
proceed to eliminate ghost points, split overlapping mark-
ers, correct mislabeled markers, and fill short gaps in the
marker trajectories. The annotators, following the order
from articulated parts to rigid bodies, human bodies, and
both hands, systematically clean the results of the collected

1



markers. Subsequently, the sequences are exported to the
multi-view interactive editor. In the editor, annotators verify
the cleaned MoCap results and recover the marker positions
in extreme occlusion cases through triangulation-based an-
notations from 2D point locations in multiple views. The
results are combined to get the cleaned captured reflective
marker positions in the capture volume.

A.3. Human Pose and Surface

We employ a two-stage fitting approach inspired by the ap-
plication of the MoSH++ algorithm in [5, 19, 25] for the
SMPL-X [24] annotations. The first stage registers the sub-
ject’s SMPL-X shape parameters and establishes correspon-
dence mapping from the markerset to the surface of SMPL-
X model. The second stage registers SMPL-X pose param-
eters for each frame in the sequence. The two-stage fitting
pipeline is implemented on PyTorch for its automatic dif-
ferentiation support and common gradient descent based al-
gorithms are used to solve for both stages.

The first stage. Let β̄ be shape parameters. Let P (c)
M ∈

RNM×3 be surface marker positions lying in SMPL-X
canonical space, where NM is the number of markers in
the target markerset. Let θ = {θi} be SMPL-X pose pa-
rameters for each frame i when the subject is in T-pose.
The first stage could be formulated as an optimization pro-
cess to minimize the distance between the observed markers
and the reconstructed markers derived from surface marker
positions lying in SMPL-X canonical space, as shown in
Eq. (1).
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The main cost is Erecon, which is the distance between the
observed markers PM and the reconstructed markers P̂M
derived from surface marker positions. Let V (c) be the sur-
face vertices in the canonical space of SMPL-X, V be the
reconstructed surface vertices. The markerset correspon-
dence function C(·) uses markerset position P

(c)
M and sur-

face vertices V (c) in canonical space to recover the mark-
erset positions P̂M from the current reconstructed surface
vertices V . It first projects the markers in canonical space
P

(c)
M into local frames formed by the surface vertices to get

the vertex index IM and coefficients in local frames CM.
Then it uses the index to recover frames on posed vertices
V and the coefficients in local frames to recover marker
positions on the posed SMPL-X bodies. Erecon can then be
expressed as in Eq. (2).
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is an auxiliary term that minimizes
negative log-likelihood of human body poses computed by
prior from pre-existing datasets following the practice in
[19]. Eplau(h)

(
θ
)

is an implementation of anatomy loss in
[28] on the SMPLX model, designed to prevent distortion
in the pose of the human body during the fitting process,
enhancing its physical plausibility. Ereg
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)
is an

auxiliary term that regularize the optimization variables.

The second stage. In the second stage, we fit the subject’s
pose θ = {θt} throughout the interaction process based on
the shape β̄ and marker correspondence C(·) obtained in the
first stage.

For each frame t in the sequence, we optimize the
subject’s SMPL-X pose parameter θt to minimize a com-
bination cost composed of observed marker reconstruc-
tion error Erecon

(
θt
)
, body pose prior Eprior(b)

(
θt
)
, hand

anatomy abnormality Eplau(h)
(
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)
, hand-object intersection

Eplau(ho)
(
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)

and other auxiliary regularization costs.
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are the same cost
terms as in the first stage. Eplau(ho) penalizes the penetration
and intersection between the interacting hands and objects
by sampling internal points inside hand meshes and com-
puting the sum of their signed distance function values of
the objects. Ereg

(
θt
)

not only includes regularization terms
for the optimization variables but also contains velocity reg-
ularization terms to keep the smoothness of the annotated
trajectories.

Optimization We implement the two-stage fitting pipeline
on PyTorch for its automatic differentiation support. We
adopt Adam [12] as the optimizer to solve for both stages, as
it is widely applied and suitable for non-convex cost terms
introduced in both stages. We propose an early stopping
mechanism for better running speed of the second stage:
if there is no significant reduction in the fitting cost over
a number of consecutive frames that exceeds a specific
threshold, the optimization process will be terminated.

B. Dataset Meta Information
B.1. Task-specific Subsets

Since OAKINK2 is intended for various types of tasks, we
create multiple subsets with different strategies for sam-
ple selection and data organization tailored to each specific
task. To obtain these subsets, we apply a few heuristics to
determine whether each sample meets the requirements of
the task it needs to support. For instance, the visibility of



Dataset image
mod. resolution #frame #views #subj #obj 3D

gnd.
real /
syn.

label
method

hand
pose

obj
pose

afford.
inter.

dynamic
inter.

long-
horizon

task
decomp.

EPIC-KITCHEN-100 [4] ✓ ∼ 20M† 1 37 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
Ego4D [7] ✓ ∼‡ ∼† 1 931 – ✗ – – ✗ ✗ ✗ ✗ ✓ ✓
HA-ViD [30] ✓ 1280× 720 1.5M 3 30 40 ✗ – – ✗ ✗ ✗ ✗ ✓ ✓

FPHAB [6] ✓ 1920× 1080 105K 1 6 4 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
ObMan [10] ✓ 256× 256 154K 1 20 3K ✓ syn simulate ✓ ✓ ✗ ✗ ✗ ✗
YCBAfford [3] ✓ – 133K 1 1 21 ✓ syn manual ✓ ✗ ✗ ✗ ✗ ✗
HO3D [9] ✓ 640× 480 78K 1-5 10 10 ✓ real auto ✓ ✓ ✗ ✓ ✗ ✗
ContactPose [1] ✓ 960× 540 2.99M 3 50 25 ✓ real auto ✓ ✓ ✓ ✗ ✗ ✗
GRAB [25] ✗ – 1.62M – 10 51 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
DexYCB [2] ✓ 640× 480 582K 8 10 20 ✓ real crowd ✓ ✓ ✗ ✓ ✗ ✗
H2O [13] ✓ 1280× 720 571K 5 4 8 ✓ real auto ✓ ✓ ✓ ✓ ✗ ✗
HOI4D [16] ✓ 1280× 800 3M 1 9 1000 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗
ARCTIC [5] ✓ 2800× 2000 2.1M 9 10 11 ✓ real mocap ✓ ✓ ✓ ✓ ✗ ✗
ContactArt [31] ✓ – 332K – – 80 ✓ real transfer ✓ ✓ ✗ ✓ ✗ ✗
AssemblyHands [21] ✓ 1920× 1080 3.03M 12 34 – ✓ real semi-auto ✓ ✗ ✓ ✓ ✓ ✓
AffordPose [11] ✗ – – – – 641 ✓ syn manual ✓ ✓ ✓ ✗ ✗ ✗

TACO [17] ✓ 4096× 3000‡ 5.2M 13 14 196 ✓ real auto ✓ ✓ ✓ ✓ ✗ ✗

Ego-Exo4D [8] ✓ ∼‡ ∼† 5-6 839 – ✓ real semi-auto ✓ ✗ ✗ ✓ ✓ ✓
OakInk-Image [29] ✓ 848× 480 230K 4 12 100 ✓ real crowd ✓ ✓ ✓ ✓ ✗ ✗
OakInk-Shape [29] ✗ – – – – 1700 ✓ real transfer ✓ ✓ ✓ ✗ ✗ ✗

OAKINK2 ✓ 848× 480 4.01M 4 9 75 ✓ real mocap ✓ ✓ ✓ ✓ ✓ ✓

Table 1. A cross-comparison among various public datasets. ∼: The value is either not provided on the paper or measured in a different
unit. †: Datasets measure in record time rather than number of captured frames. In particular, EPIC-KITCHEN-100 contains more than
100 hours of video, Ego4D 3670 hours, and Ego-Exo4D 1422 hours. They are larger in scale than any other dataset listed in the table. ‡:
Dataset has a mixed resolution.
Legend:
image mod. : Image Modality. ✓ means real image captures; ✓ means synthetic (rendered) images; ✗ means no image modality provided.
3D gnd. : 3D grounding. ✓ means the dataset contains 3D grounding annotations; ✗ means the dataset is 2D only.
real / syn. : Interaction is real / synthetic. Here syn indicates the interactions come from certain grasp/interaction synthesizer.
label method : Label Method of 3D grounding information. For synthetic interactions, “simulate” indicates interactions are retrieved from
physical-based grasp simulators, e.g. GraspIt! [20]; “manual” indicates interactions are labeled with human labor. For real interactions,
“mocap” indicates the interactions are captured by MoCap systems; “crowd” indicates the interactions are derived from crowd-source
keypoint annotations; “auto” indicates the interactions are retrieved from automatic annotation pipelines; “semi-auto” indicates a hybrid of
“crowd” and “auto” methods.
afford. inter. : Affordace-based Interaction. ✓ means the interactions captured are affordance-aware and explicitly labeled; ✓ means the
interactions are afforance-aware but grouped in coarse-grained labels like intentions; ✗ means the interactions are not organized by object
afforances.
dynamic inter. : Dynamic Interaction. ✓ means the dataset captures dynamic sequence of hand-object interactions; ✗ means the dataset
captures static grasps that do not change during the interaction process.
long-horizon : Long-horizon Tasks. As in the main text, ✓ means the dataset contains captured interactions that involved more than one
object afforances; ✗ vice versa.
task decomp. : Task Decomposition. As in the main text, ✓ means the dataset contains annotations that decomposition a complex task
into multiple segments; ✗ vice versa.

hands or objects in image samples is essential for support-
ing related vision tasks. We verify the individual and com-
bined segmentation masks for hands and objects in the im-
ages. If the proportion of the combined segmentation mask
to its individual counterpart exceeds a certain threshold, we
consider the instance as visible in the current frame. We re-
gard the object to interact as grasped if it is close enough
to hands (minimal distance ≤ 5mm) and lifted (height dis-
placement to the initial state ≥ 5mm).

We show the features and the construction methods for

task-specific subsets in the following list.

OAKINK2-H-SV Subset for hand reconstruction from
single-view images. We select views that the subjects’
hands are visible to form this subset. This subset supports
task single-view Hand Mesh Recovery.

OAKINK2-H-MV Subset for hand reconstruction from
multi-view images. We select combined views from differ-
ent cameras as a single sample in this subset if the subjects’
hands are visible in a majority of camera views. This subset
supports task multi-view Hand Mesh Recovery.



Figure 2. Distribution of Primitive Task demonstrations. The
sub-figure above displays the proportion of Primitive Task demon-
strations across various scenarios within the entire OAKINK2
dataset, with frequently occurring Primitive Tasks highlighted.
The sub-figure below presents a list of Primitive Tasks recorded
in OAKINK2, along with the illustration of their corresponding
quantity distribution. A list of all recorded Primitive Tasks and
Complex Tasks can be found at Tab. 4 and Tab. 5.

OAKINK2-HO Subset for hand-object pose estimation or
reconstruction from images. We select views that the sub-
jects’ hands are visible and the object is grasped to form
this subset.

OAKINK2-Grasp Subset for grasps on the objects. We
select frames that the object is grasped to form this subset.

OAKINK2-Motion-Approach&Retreat Subset for the in-
teraction process that the subjects approach and grab the
object for future tasks. We select frames from the sequence
in one Primitive Task that cover the process of approach
and grasp the object are collected to form this subset. This

subset provides auxiliary information in Task-aware Motion
Fulfillment and Object Trajectories Retrieval from Oracle
Queries in Complex Task Completion.

OAKINK2-Motion-Task Subset for the interaction pro-
cess that the subjects complete a task and fulfill one ob-
ject affordance. We select frames from the sequence in
one Primitive Task that cover the process from the grasp
of the object to the completion of the task are collected to
form this subset. This subset supports Task-aware Motion-
Fulfillment.

C. Dataset Evaluation
Annotation on 3D hand keypoints undergo cross-dataset
validation with a reconstruction model, while the 3D poses
associated with grasping actions are examined for their
physical property integrity.

C.1. Cross-Dataset Validation

We perform cross-dataset validation to verify the consis-
tency of 3D hand keypoint annotations in OAKINK2 with
pre-existing datasets. We train a single-view hand mesh
recovery model [15] separately on three different train-
ing schemes: FreiHAND [32] only, OAKINK2-H-SV only,
and a mixture of these two sets. We evaluate MPJPE and
MPVPE after Procrustes analysis on OakInk-image (SP2)
[29], and the results shown in Tab. 2 indicates a consistent
improvement on these metrics, verifying that OAKINK2
complements existing datasets and boosts existing models.

Train Test PA-MPJPE (mm) ↓ PA-MPVPE (mm) ↓

1) FreiHAND OakInk-image (SP2) 12.07 11.96
2) OAKINK2-H-SV OakInk-image (SP2) 12.60 11.04
1) & 2) mixture OakInk-image (SP2) 10.94 9.67

Table 2. Cross dataset validation for OAKINK2.

C.2. Physical Property Assessment

To evaluate the quality of the 3D poses associated with
grasping actions in OAKINK2, we inspect several physical-
based metrics that assess the feasibility and stability of cap-
tured hand-object interactions. We restrict the samples to
be evaluated based on certain rules (the objects in inter-
action need to be grasped and lifted), ensuring that these
physics-based quality metrics accurately reflect the qual-
ity of the dataset during the interaction process. We com-
pare OAKINK2-Grasp (-G.) with two subsets of OakInk:
OakInk-Core and OakInk-Shape (Tab. 3). We observe that,
despite the use of the mocap system as the primary an-
notation method for easily scaling up the capture process,
OAKINK2 still achieved annotation quality on par with
OakInk built upon the hybrid of manual and mocap annota-
tion. More qualitative visualizations of OAKINK2 are pro-
vided in Fig. 6.



Metrics OAKINK2-G. OakInk-Core OakInk-Shape

Penet. Depth. cm↓ 0.25 0.18 0.11
Solid Intsec. Vol. cm3↓ 0.61 1.03 0.62
Sim. Disp. Mean cm↓ 1.83 0.98 0.94
Sim. Disp. Std cm↓ 1.16 1.74 1.62

Table 3. Quality assessment of OAKINK2.

D. Tasks and Benchmarks

D.1. Task-aware Motion Fulfillment

Train-Val-Test Split Following the same practice as
HMR, we partition the subsets at the sequence level, main-
taining the proportion of samples in train/val/test sets at ap-
proximately 70%, 5%, and 25%, in alignment with OakInk.

Evaluation Metric Details
CR, Contact Ratio. This metric measures the ratio of the
frames within the motion trajectories where the hand-object
contact (minimum distance) is within a 5mm threshold.
SIV, Solid Intersection Volume. This metric measures
how much space intersection occurs during estimation. We
voxelize the object mesh into 1003 voxels, and calculate
the sum of the voxel volume inside the hand surface.
PSKL-J, Power Spectrum KL divergence of Joints.
This metric reflects the smoothness of the generated
motion. It measures the acceleration distribution variance
between predicted and g.t. joint sequences, reporting
results in both directions. We reference our implementation
on [14, 27]. The notable difference is that we use hand
joints for measurement, resulting in a distinct range of
metric values compared to full-body joints.
FID, Fréchet Inception Distance score. This metric eval-
uates the realism of the generated motion trajectory. We de-
velop a motion feature extractor based on the transformer
encoder architecture. The embedding is obtained by ap-
pending a trailing token to hand motion trajectories. The
embedding we use for each motion is of 64 dimensions.
The encoder is trained by the classifying motion trajectories
into their corresponding categories. We apply the encoder
to both ground-truth trajectories and generated trajectories
and compute Fréchet Inception Distance between them for
motion realism evaluation.

E. Application: Complex Task Completion

Test Scene Generation. To evaluate the ability of the
oracle-facilitated three-stage method described in the main
text to accomplish complex tasks, we derive a set of test
environments by perturbing the object positions within the
complex scenarios contained in OAKINK2 dataset without
altering the task objectives textgoal and the descriptions of
the objects’ states {textobj}.

We utilize ground truth annotations to generate varia-
tions in the test scenes. We treat specific object sets as
clusters and place them in randomized locations. Objects
within the same cluster share a unified offset to ensure col-
lective randomization. This is crucial when groups of ob-
jects must maintain coherence in their movements. The pro-
cess of randomization comprises four distinct wander steps.
This helps prevent obstruction caused by other objects when
an object ventures in a random direction. Hence, each ob-
ject gains an enhanced opportunity to navigate around other
structures within its environment. Each object’s final loca-
tion results from the cumulative effect of these four wander
steps. Within each wander step, a maximum of eight itera-
tions are employed for collision prevention between objects
by reducing the step length to half.

Prompt Generation. We implement Primitive Planning by
tweaking the Large Language Model – GPT-4 [22] in this
study – so that it can generate Python code based on narra-
tive prompts describing the current scenario and task objec-
tives. The language model’s role is to interpret this descrip-
tion, identify key objects involved in the task, determine the
appropriate object affordance and trajectory, and generate
suitable instances of Primitives execution organized into a
feasible sequence.

Our approach to overcoming these challenges involves
the design of a prompt template that incorporates both scene
and task descriptions as referenced earlier. This template
not only explicates the underlying code framework but also
provides a sample of scenario-independent code. We further
prompt the Language Learning Model (LLM) to produce a
code implementation as a response, as opposed to providing
an explanatory narrative of coding procedures.

Concerning the underlying code framework, to ensure
robust and coherent code generation, we propose an Entity-
Component-System (ECS) architecture. This structure en-
courages a decoupling of components, here referred to as
data or state, from the system, representing the Primitives in
our context. This approach endows us with the capability of
generating uniformly styled code implementations, where
the layout involves instantiating object entities, loading the
affordance as a component, and submitting the Primitives
to the execution system.

Evaluations of Primitive Planning. We employ a checker
based on the Primitive Dependency Graph provided along
with the Complex Tasks to be planned to benchmark the
success rate of the program that is supposed to complete
the task target. We analyze the checker results and ob-
serve an overall success rate of 36% in the generation of
Planning codes. Concerning the number of Primitives in-
corporated within the Complex Tasks, we observed differ-
ing success rates. Specifically, in those Complex Tasks in-
corporating equal to or less than three Primitives, a suc-



cess rate of 44% was obtained Conversely, in the Complex
Tasks category incorporating between three and five Primi-
tives, the success rate dropped to 20%. Notably, no success
was recorded in Complex Tasks incorporating more than five
Primitives. The results demonstrate that in the current set-
ting, the Large Language Model (LLM) is adequate to han-
dle relatively simpler Complex Tasks. However, in contexts
of highly complex Complex Tasks, the LLM struggles to
accurately comprehend the relationships and dependencies
between objects’ affordances and the corresponding Primi-
tives.

Demo Planning Result. We provide a review of the results
of a completed Complex Task within one of the constructed
test scenes. The python programs generated are listed as
Listing 2. This code joins all the relevant objects and their
associated affordances, proceeding to execute the Primi-
tives in the precise required order. We have also included
an example of a failed case, presented as Listing 3, which
highlights a failure in the execution of Primitive Planning.
This failure is characterized by a superfluous Primitive that
fulfills an unnecessary object affordance that blocks the ex-
ecution path.

Alternative Motion Generation for Complex Task Com-
pletion. In addition to the TaMF-based motion generation
approach presented in the main text, we explore an alterna-
tive strategy that leverages keyframe generation and motion
in-betweening as motion generator for Complex Task Com-
pletion. We adopt GNet and MNet in GOAL [26] and INet
in FAVOR [14]. These models follow the pattern of first
generating hand-object interactions in key frames, and then
generating intermediary interaction trajectories within these
frames. The generation contains three stages. In the first
stage, GNet generates static grasps based on the object’s
initial and terminal poses. Subsequently, MNet generates
motion trajectories to reach the object and retreat from the
object. In the final stage, INet is fed with alternating ob-
ject poses from the object motion trajectory to generate the
in-between motion during the interaction process. The ob-
ject oracle trajectories result in a sequence of human body
movements depicted in Fig. 3. The left-hand images of
Fig. 3 illustrate the sequential actions of approaching and
utilizing a knife to cut a pear, representing the affordance
cut associated with the knife under the Primitive Task cate-
gory. The right-hand images illustrate the sequence of lift-
ing a bottle and pouring its contents into a pan, indicative of
the Primitive Task affordance, pour, as related to the bottle.

Figure 3. Oracle Trajectories and Motion Generation This fig-
ure illustrates the successful Complex Task completion of two
Primitive Tasks. The top pair of images depict the oracle trajecto-
ries, while the bottom pair represents the sequential motion gener-
ated.



F. Dataset Inspection
F.1. Task List

Table 4. Collected Affordances and Designed Primitive Tasks.

Scenario Affordance Affordance Instantiation Primitive Task
kitchen table <be rearranged, > rearrange

<store securely, sth>
<contain, sth>

<flow in, sth> pour
<pour, sth> pour
<shake, sth> shake

<secure, sth>
<screw into, sth> screw
<unscrew from, sth> unscrew
<cap onto, sth> cap
<uncap from, sth> uncap

<grip, sth> grip
<scoop, sth> scoop
<scrape, sth> scrape
<cut, sth> cut
<stir, sth> stir
<spread, sth> spread
<assemble into, sth> assemble
<wipe, sth> wipe
<heat with microwave, sth>

<contain, sth>
<place inside, sth> place inside
<take outside, sth> take outside

<secure, sth>
<shut, sth> close gate
<open, sth> open gate

<control, sth>
<be pressed, > press button
<trigger, sth> trigger lever

<weigh, sth>
<support, sth> place onto

study room table <be rearranged, > rearrange
<store securely, sth>

<contain, sth>
<place inside, sth>
<take outside, sth>

<secure, sth>
<cover, sth> put on lid
<uncover, sth> remove lid
<shut, sth> pull out drawer
<open, sth> push in drawer

<illuminate, sth>
<connect to, sth>

<connect to, power socket> plug in power plug
<deconnect from, power socket> remove power plug
<connect to, usb> insert usb
<deconnect from, usb> remove usb
<connect to, lightbulb socket> insert lightbulb
<deconnect from, lightbulb socket> remove lightbulb

<shear, paper>
<secure, sth>

<cap, pen tip> cap the pen
<uncap, pen tip> remove the pen cap

<write/draw, sth> write on paper
write on whiteboard

<brush, whiteboard> brush whiteboard
<be sharpen by, sth> sharpen pencil
<sharpen, pencil> sharpen pencil
<staple together, paper> staple paper together
<be written/drawn by, pen/pencil> write on paper

write on whiteboard
<be sheared by, scissors> shear paper
<be stapled together by, stapler> staple paper together
<be turn, > close book

open book
<display, sth>

<protect, sth>
<open, laptop lid> open laptop lid
<close, laptop lid> close laptop lid

<control, sth> use keyboard
use mouse



Table 4. Collected Affordances and Designed Primitive Tasks.

Scenario Affordance Affordance Instantiation Primitive Task
use gamecontroller

<cultivate, flowers> put flower into vase
<be cultivated in, sth> put flower into vase

demo chem lab <be rearranged, > rearrange
<store securely, experiment
substances>

<contain, experiment substances>
<flow in, experiment substances> pour in lab
<pour, experiment substances> pour in lab
<shake, experiment substances> shake lab container

<secure, experiment substances>
<screw into, lab container> screw
<unscrew from, lab container> unscrew
<cap onto, lab container> cap
<uncap from, lab container> uncap

<contain, experiment substances>
<flow in, experiment substances> pour in lab
<pour, experiment substances> pour in lab
<shake, experiment substances> shake lab container

<be heated by, alcohol lamp> heat beaker/flask
heat test tube

<stir, experiment substances> stir experiment
substances

<be ignited, > ignite alcohol lamp
<heat, lab container> heat beaker/flask

heat test tube
<put off, alcohol lamp> put off alcohol lamp
<ignite, alcohol lamp> ignite alcohol lamp
<clamp, test tube> hold test tube
<conduct heat to, lab container> place asbestos mesh
<support, lab container> place asbestos mesh

bathroom table <be rearranged, > rearrange
<contain, sth>

<squeeze out, sth> squeeze tooth paste
<secure, sth>

<shut, sth> flip open tooth paste
cap

<open, sth> flip close tooth paste
cap

Table 4. Collected Affordances and Designed Primitive Tasks. The first column records the manipulation scenarios. The second column lists
collected affordances of object instances and parts. The affordances of object parts are indented below their parent instance-level affordance.
The third column lists the instantiations of object affordances. These instantiations are bound to certain object attributes, e.g. <screw,
sth> is bound to actual screws on the bottle’s opening and cap. The fourth column lists the designed Primitives corresponding to the
affordances. Some Primitives are set to gray for these Primitives are difficult to demonstrate and capture in individual. Demonstrations of
these tasks are embedded within Complex Task demonstrations.

Scenario Complex Task
kitchen table heat with microwave oven; weigh with scale; scoop and pour; scoop and grip; scoop and wipe; scoop and scrape; pour and

stir; grip and pour; pour and arrange; weigh with scale and pour; pour and scrape; grip and arrange; weigh with scale and
grip; grip and wipe; pour and grip; clean the kitchen table; prepare a cup of hot sweet drink; prepare a bowl of hot soup with
salt; prepare a cup of hot sweet fruit tea; prepare a chilled apple platter; prepare a savory fruit salad; prepare a baked sweet
donut with sauce; prepare a baked sweet donut with apple slices and jam; prepare a savory baked sweet donut; prepare a
cheese-baked sweet donut with tomato sauce; prepare savory baked apple slices with cheese; prepare a chilled fruit platter;
make a baked sandwich with a filling of donut and salt; make a sandwich with a filling of tomato sauce and sugar; make a
sandwich with a filling of apple slices and donut, adding tomato sauce, mustard sauce, salt, and sugar; make a baked sandwich
with a filling of cheese and donut, adding tomato sauce; scoop, unscrew, pour, and screw; grip and scoop; scoop and scoop;
scoop and arrange; weigh with scale and scoop; cut and scoop; cut and pour; grip and stir; grip and scrape; cut and grip; grip
and assemble; stir and arrange; stir and scrape; scrape and arrange; weigh with scale and assemble; unscrew and pour; pour
and screw; uncap and scrape; scrape and cap; uncap, scrape, and cap; scrape and assemble; assemble and arrange; unscrew
and heat with microwave; pour and heat with microwave; heat with microwave and pour; heat with microwave and stir; heat
with microwave and assemble; cut and heat with microwave; uncap, pour, and cap; prepare a cup of chilled green tea; prepare
a cup of apple green tea; prepare a cup of mixed flavor fruit juice; prepare a cup of savory fruit juice milk tea; prepare a cup
of pear milk tea with fruit jam; prepare a cup of savory honey fruit juice milk tea; prepare a cup of savory strawberry orange
juice mixed with milk; uncap and scoop; prepare a cup of wine; prepare a cup of milk tea; prepare a cup of chilled fruit tea;
prepare a cup of honey coffee; prepare a cup of chilled juice milk with jam; prepare a cup of chilled sweet milk tea;



Scenario Complex Task
study room table put into box; take out of box; put into drawer; take out of drawer; ready the laptop on the desktop for work; tidy up the

desktop with the laptop after work; ready the laptop on the desktop for entertainment; illuminate the desktop; sharpen the
pencil and write; tidy up the desktop with the laptop after entertainment; tidy up the desktop after paper-cutting; write and
bind the paper; design and cut out rectangle shape on the paper; press button and open laptop; press button and close laptop;
press button and put into box; press button and take out of box; press button and remove power plug; insert usb and plug
in power plug; tidy up the desktop after writing; plug in power plug and press button; design and cut out flower shape on
the paper; design and draw on the paper; ready the laptop and the lamp on the desktop for work; design, write and bind the
paper; ready the desktop for drawing; take out of drawer, insert usb, and open laptop; put into drawer and put into box; put
into drawer, put into box, and close laptop; remove usb, close laptop, and put into drawer; tidy up the desktop after drawing;
cut and bind paper; ready the laptop and the lamp on the desktop for entertainment; design, draw and cut out flower shape on
the paper; design, draw and bind the paper; tidy up the desktop after binding paper;

demo chem lab transfer and heat liquid in beaker; transfer and heat liquid in conical flask; heat liquid in beaker and transfer liquid; heat
liquid in conical flask and transfer liquid; transfer and heat liquid in beaker and transfer liquid out; heat liquid in test tube and
transfer liquid; prepare solution through heating; mix liquid; pour in lab and shake in lab; pour in lab and pour in lab; pour in
lab and heat test tube; pour in lab and light lamp; stir in lab and pour in lab; stir in lab and heat beaker; shake in lab and pour
in lab; shake in lab and heat test tube; shake in lab and heat beaker; heat beaker and put off lamp; heat test tube and put off
lamp; light lamp and put off lamp; put off lamp and pour in lab; put off lamp and stir in lab; put off lamp and shake in lab;
heat beaker and stir in lab; stack mesh and heat beaker; light lamp and heat beaker; light lamp and heat test tube; pour in lab,
shake in lab, and heat test tube; stir in lab, pour in lab, and shake in lab; light lamp, heat beaker, and put off lamp; light lamp,
heat test tube, and put off lamp; stack mesh, light lamp, and heat beaker; light lamp, heat beaker, and stir in lab; light lamp,
heat test tube, and shake in lab; pour in lab, pour in lab, and pour in lab; pour in lab, shake in lab, and pour in lab; stir in lab,
stack mesh, and heat beaker; shake in lab, pour in lab, and heat test tube; shake in lab, heat test tube, and pour in lab; heat
beaker, stir in lab, and pour in lab; heat beaker, put off lamp, and pour in lab; heat beaker, put off lamp, and stir in lab; heat
test tube, put off lamp, and shake in lab; pour in lab, stir in lab, and pour in lab; pour in lab, pour in lab, pour in lab, pour in
lab, and pour in lab; stir and transfer liquid; heat liquid in beaker; heat liquid in test tube; put off lamp, pour in lab, and shake
in lab; put off lamp, stir in lab, and pour in lab; prepare solution in beaker;

bathroom table squeeze tooth paste tube to tooth brush; squeeze tooth paste and stack tooth brush; prepare for teeth brushing.

Table 5. Recorded Complex Tasks. We list the names of the recorded Complex Tasks here.

F.2. Visualization



����

�������� ����

�����

������

��� ���� ������������

������������ ��
���������

������������ ��
��������� ������������ ��
���������

������������������� ������������

������������

������������

���������� ����������

�����������������������������

����������������������������������� �������������������� ���������������� ����������������

����������������������������� ��������������

������������������� ����������������

��������������

��������������������� �������������������������� ����������������

����
��������������

������	�������������������

���
��������������� ��������
���
��
 ��������������

������	�������������������������������������� �������������������

��������������

�������������������

�������������������
����������������������� 
������������������������

������

������������

Figure 4. Primitives visualization.



Figure 5. Object visualization.



Figure 6. Dataset visualization. Human bodies and objects within the scene are rendered onto the captured raw images for visualization.



1 You are a python programming expert and you are asked to finish a certain bimanual robotics task.
2
3 Scene Description:
4 {scene_desc}
5
6 Task Description:
7 {task_desc}
8
9 The Structure of the code is a ECS architecture defined as

10 ECS File
11
12 The entities are defined as
13 Entity File
14
15 The components are defined as
16 Component File
17
18 The systems are defined as
19 System File
20
21 The task is to finish the methods called "exec_task" in this class {read_from_file(scene_path)}
22
23 You need to query the raw 3d object from the scene which contains object name as keys in scene description and you can

use them to query different type of information from the scene. Build them into Objects and instantiate
PrimitiveTasks to finish the job.

24 Leave the objects not mentioned in the task description as they are.
25 Avoid using any methods with underscore prefix. Explicitly specify the keyword arguments instead of using **kwargs.
26 For example:
27
28 an_object = Object(’object_name’,
29 geometry=self.query_geometry_info(’object_name’),
30 ...
31 )
32
33 a_primitive_task = PrimitiveTask(an_object.affordance.get_primitive_task_info(’primitive_task_name’))
34
35 a_primitive_task.execute(src_object=an_object, tgt_object=another_object, trajectory=oracle.generate(a_primitive_task)

)
36
37 Explanation of the code is unnecessary. Putting everything in method implementation would be admired. Respond with

exec_task(self) itself.

Listing 1. Prompt Template. Entity marks object instances present in the scene. Component accommodates information of objects’ initial
status and affordances. System accommodates the interface of motion generators for Primitives. The example code incorporated in the
prompt demonstrates the interface of oracle queries for object motion trajectories.

1 # Task
2 # The task is to cut the pear into pieces which to be put in the pan and add some season.
3
4 # Scene
5 # In a kitchen, on a table, these objects are placed: [knife, pear, bottle, pan]
6 def exec_task(self):
7 # making an object for knife
8 knife = Object(’knife’,
9 geometry=self.query_geometry_info(’knife’),

10 state=self.query_state_info(’knife’),
11 affordance=self.query_affordance_info(’knife’)
12 )
13
14 # making an object for pear
15 pear = Object(’pear’,
16 geometry=self.query_geometry_info(’pear’),
17 state=self.query_state_info(’pear’),
18 affordance=self.query_affordance_info(’pear’)
19 )
20
21 # making an object for pan
22 pan = Object(’pan’,
23 geometry=self.query_geometry_info(’pan’),
24 state=self.query_state_info(’pan’),
25 affordance=self.query_affordance_info(’pan’)
26 )
27
28 # making an object for bottle
29 bottle = Object(’bottle’,
30 geometry=self.query_geometry_info(’bottle’),
31 state=self.query_state_info(’bottle’),
32 affordance=self.query_affordance_info(’bottle’)
33 )
34
35 # creating primitive task for cutting
36 cut_pear = PrimitiveTask(knife.affordance.get_primitive_task_info(’cut’))
37 cut_pear.execute(src_object=knife, tgt_object=pear, trajectory=oracle.generate(cut_pear))
38
39 # creating primitive task for placing pear inside the pan
40 put_task = PrimitiveTask(pear.affordance.get_primitive_task_info(’put_inside’))
41 put_task.execute(src_object=pear, tgt_object=pan)
42
43 # create primitive task for adding season
44 add_season = PrimitiveTask(bottle.affordance.get_primitive_task_info(’pour’))
45 add_season.execute(src_object=bottle, tgt_object=pan, trajectory=oracle.generate(add_season))

Listing 2. Primitive Task Planning Success Example.



1 # Task
2 # The task is to light the alcohol lamp to heat the compound in the beaker. The lamp is capped at the beginning. Put

the beaker on the support with mesh when heating
3
4 # Scene
5 # In a chemistry laboratory, on a table, these objects are placed: [lighter, alcohol_lamp, beaker, heat_support, mesh]
6 def exec_task(self):
7 # Uncap
8 alcohol_lamp = Object(’alcohol_lamp’,
9 geometry=self.query_geometry_info(’alcohol_lamp’),

10 affordance=self.query_affordance_info(’alcohol_lamp’),
11 state=self.query_state_info(’alcohol_lamp’)
12 )
13 uncap_alcohol_lamp_task = PrimitiveTask(alcohol_lamp.affordance.get_primitive_task_info(’uncap’))
14 uncap_alcohol_lamp_task.execute(src_object=alcohol_lamp, trajectory=oracle.generate(uncap_alcohol_lamp_task))
15
16 # Light
17 lighter = Object(’lighter’,
18 geometry=self.query_geometry_info(’lighter’),
19 affordance=self.query_affordance_info(’lighter’),
20 state=self.query_state_info(’lighter’)
21 )
22 light_alcohol_lamp_task = PrimitiveTask(lighter.affordance.get_primitive_task_info(’light_lamp’))
23 light_alcohol_lamp_task.execute(src_object=lighter, tgt_object=alcohol_lamp, trajectory=oracle.generate(

light_alcohol_lamp_task))
24
25 # Arrange (put on the mesh support)
26 beaker = Object(’beaker’,
27 geometry=self.query_geometry_info(’beaker’),
28 affordance=self.query_affordance_info(’beaker’),
29 state=self.query_state_info(’beaker’)
30 )
31 heat_support = Object(’heat_support’,
32 geometry=self.query_geometry_info(’heat_support’),
33 affordance=self.query_affordance_info(’heat_support’),
34 state=self.query_state_info(’heat_support’)
35 )
36 mesh = Object(’mesh’,
37 geometry=self.query_geometry_info(’mesh’),
38 affordance=self.query_affordance_info(’mesh’),
39 state=self.query_state_info(’mesh’)
40 )
41 put_beaker_on_mesh_task = PrimitiveTask(beaker.affordance.get_primitive_task_info(’arrange’))
42 put_beaker_on_mesh_task.execute(src_object=beaker, tgt_object=heat_support, trajectory=oracle.generate(

put_beaker_on_mesh_task))
43
44 # Stack mesh to heat
45 stack_mesh_task = PrimitiveTask(mesh.affordance.get_primitive_task_info(’stack_mesh’))
46 stack_mesh_task.execute(src_object=mesh, tgt_object=beaker, trajectory=oracle.generate(stack_mesh_task))
47
48 # Heat
49 heat_beaker = PrimitiveTask(alcohol_lamp.affordance.get_primitive_task_info(’heat_beaker’))
50 heat_beaker.execute(src_object=alcohol_lamp, tgt_object=beaker, trajectory=oracle.generate(heat_beaker))

Listing 3. Primitive Task Planning Fail Example. One violation of dependency occurs (line 41): the extra place onto primitive
erroneously positions the beaker upon the support prior to the asbestos mesh’s placement on the support. This blocks the correct execution
path that requires placing the asbestos mesh before heating the beaker.
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