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Content removal: “A wheat field.”

Environment swap: “A woman walking, Egyptian pyramids.”

Content removal: “A field of purple flowers.”

Environment swap: “A tiger walking on a beach.”

Figure A1. Other applications. We show how our approach can be applied to other video inpainting tasks, such as content removal and
environment swap.

Overview
The supplementary material accompanying this paper pro-
vides additional insights and elaborations on various aspects
of our proposed method. The contents are organized as fol-
lows:
• Qualitative Results: We showcase a broader range of

qualitative results demonstrating the efficacy of every
video inpainting type of AVID on videos of variable time
duration. The results can be found in Appendix A of the
supplementary material.

• Application to Other Tasks: Appendix B presents the
application of AVID on other text-guided video inpaint-
ing types.

• Test-Time Efficiency Analysis: An in-depth analysis of
the test-time efficiency of our method is provided in Ap-
pendix C.

• More Comparative Analysis: Additional comparative
studies are detailed in Appendix D.

• Ablation Study: We extend the ablation analysis men-

tioned in the main paper (Appendix E).
• Limitations: Appendix F is dedicated to discussing the

limitations and potential areas for improvement in our
method.

• Extension to Text-to-Video Generation: We explore the
application of our proposed sampling pipeline to the do-
main of any-length text-to-video generation. The results
of this exploration are presented in Appendix G.
For a more immersive experience, we encourage readers

to look at the results in video format, available here.

A. Qualitative Results
In this section, we present an extensive collection of qualita-
tive results that demonstrate the capabilities of our proposed
method, AVID. This includes both the examples showcased
in the main paper and additional results, offering a compre-
hensive view of our method’s performance in various sce-
narios.

To facilitate a more interactive and illustrative experi-
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ence, these qualitative results are provided in video format.
Readers are recommended to check these results in the first
section of our accompanying webpage. This visualization
provides a more nuanced understanding of the temporal and
visual qualities of our video inpainting results, as well as a
deeper insight into the effectiveness of AVID in practical
applications.

B. Exploring Additional Inpainting Tasks
This section delves into the adaptability of our
AVID method to a broader spectrum of video inpainting
applications, specifically focusing on content removal and
environment swapping. Our experiments illustrate the
versatility and effectiveness of AVID in handling diverse
inpainting scenarios.

The experiments in this section are conducted using
videos withN ′ = 24 frames, corresponding to a duration of
4 seconds. We set ωs = 0.0 in these experiments, meaning
no structure guidance is applied. The results are visually
represented in Fig. A1 of the supplementary material.

B.1. Content Removal

Video inpainting has been narrowly defined as content re-
moval in previous literature [4, 10, 11]. However, with dif-
fusion models, we can enable multiple new inpainting tasks
as introduced, which traditional approaches cannot handle.
This work focuses mainly on content generation/editing
guided by a given prompt and mask. Nevertheless, our
model does also support “content removal”.

The primary goal in content removal is to eliminate a
specific object or element from the video while maintain-
ing seamless integration with the surrounding content. As
demonstrated in the top block of Fig. A1, our method ini-
tiates this process by generating a mask sequence target-
ing the object to be removed. Subsequently, we input a
prompt such as “A wheat field” that describes the desired
background, omitting any mention of the target object. This
strategy enables our model to effectively remove the object,
replacing it with contextually coherent content that blends
seamlessly with the surrounding area. We further qualita-
tively evaluate our model on the popular DAVIS [5] dataset
to better illustrate the ability of our method, as shown in
Fig. A2.

B.2. Environment Swap

The environment swap task involves altering the back-
ground or surrounding environment of a subject in the
video. Our method showcases its capability in environ-
ment swapping in the bottom block of Fig. A1. By selecting
the complement of the target region as the editing area, we
can effectively modify the video’s background. Through
prompts describing the new environment, such as “Egyp-
tian pyramids”, our model can adeptly transform the sur-

rounding setting, demonstrating its robustness in adapting
to various inpainting contexts.

B.3. Multiple Regions Inpainting

Our method is not limited to inpainting one specific region
in a video. Independent inpainting can be achieved sequen-
tially for multiple objects. As shown in Fig. A3, we conduct
re-texturing on two different regions, i.e. coat, and hair, fur-
ther demonstrating the effectiveness of our method in real-
world applications.

C. Test-time Efficiency
In this section, we extend the analysis to evaluate the test-
time efficiency of our proposed Temporal MultiDiffusion
pipeline. For simplicity, we bypass the structure guidance
in this analysis. Building upon the foundation discussed in
Sec. 3.2 of our main paper, our approach inflates an image
inpainting diffusion model, inspired by AnimateDiff [3].
This is achieved by transforming 2D layers into pseudo-3D
format, allowing independent processing of each frame. To
capture temporal correlations, we incorporate motion mod-
ules, realized through pixel-wise temporal self-attention.

Considering a video sequence with N ′ frames, a di-
rect inference approach using all N ′ frames simultaneously
leads to a temporal complexity of O(N ′2). The spatial com-
plexity for attention layers, both self and cross attention, is
O((HW )2), with H and W being the spatial dimensions.
Thus, our base model exhibits a computational complexity
of O((HW )2 ×N ′2).

The Temporal MultiDiffusion pipeline, however, seg-
ments the video into n parts, each comprising N frames,
where n = ⌈N ′−N

o ⌉ + 1 and o represents the stride.
This segmentation allows for independent calculation of
each segment at every denoising step, reducing the tempo-
ral complexity to O(N2 × n). With the incorporation of
our middle-frame attention guidance mechanism, the spa-
tial self-attention calculation effectively doubles, leading to
a total temporal complexity of O(2(HW )2 × (N2 × n)).
Notably, when N ′ >> N , the complexity of our approach
approximates to O((HW )2 × N ′), significantly more ef-
ficient than direct inference with N ′ frames. Additionally,
our pipeline necessitates the calculation of only the segment
containing the middle frame for initial attention guidance,
while other segments can be processed in parallel, leverag-
ing multi-GPU setups to expedite the process and mitigate
potential GPU memory overflows in practical applications.

D. More Comparison.
In this section, we engage in comparative experiments with
TokenFlow [2], a state-of-the-art video editing method, to
demonstrate the effectiveness of our proposed approach.
We are following the methodology outlined in Sec. 4.2 in
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Figure A2. Content removal on DAVIS [5] dataset. We apply our method for content removal on different videos in the DAVIS [5]
dataset. All frames of each video are passed to our model. Frames shown in the figure are evenly distributed in each video. We use prompts
“a field”, “a grassland”, and “a park” respectively for these videos.
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Figure A3. Multiple objects inpainting. We show how our ap-
proach can be applied to inpaint multiple objects in a video inde-
pendently.

our main paper, we assess the performance of TokenFlow
against our method, particularly focusing on tasks such as
re-texturing and object swapping. Our evaluation utilizes
the same set of videos and automatic metrics detailed in
Sec. 4.2. This comparative study aims to provide an objec-
tive and quantifiable measure of each method’s capabilities.

Despite TokenFlow’s advanced editing capabilities, our
experiments reveal a significant shortfall in its background
preservation ability. Specifically, in the context of ob-
ject swapping, TokenFlow scores 93.3 compared to our
method’s 41.1. Similarly, in re-texturing tasks, TokenFlow
scores 90.8 versus our 40.7. This disparity can be attributed
to TokenFlow’s reliance on language-based guidance for de-
termining the editing region, rather than using an explicit
mask sequence. This approach undermines the method’s
suitability for precise video inpainting tasks, where main-
taining contextual consistency is paramount.

An additional consideration is TokenFlow’s use of
DDIM inversion [6] for temporal consistent latent initial-
ization. In contrast, our method employs initialization from
a standard Gaussian distribution. This fundamental differ-
ence in initialization strategy highlights TokenFlow’s limi-
tations in tasks where no guidance can be obtained from the
source video in the target region, such as video uncropping.

Task Object swap Re-texturing∗

Metric BP TA TC BP TA TC

TF 93.3 31.5 97.5 90.8 32.2 97.8
Ours 41.1 31.5 96.5 40.7 32.0 96.3

Table A1. Quantitative results. We compare our method against
TokenFlow (TF) [2] on different video generative fill sub-tasks
and evaluate generated results using different metrics, including
background preservation (BP ×10−3, ↓ better), text-video align-
ment (TA, ↑ better), and temporal consistency (TC, ↑ better). ∗

indicates structure guidance is applied for our approach.

E. More Ablation Analysis
E.1. Temporal MultiDiffusion

This section aims to evaluate the efficacy of our Temporal
Multi-Diffusion sampling pipeline, especially in handling
videos of varying durations. As discussed in Sec. 3.4 of the
main paper, our model, while versatile, faces challenges in
maintaining quality when dealing with frame counts differ-
ent from those used in training. We address this issue by
comparing the performance of our model using the Tempo-
ral Multi-Diffusion pipeline against its direct application on
videos of different lengths.

Following the framework of AnimateDiff [3], our model
incorporates sinusoidal position encoding [7] within each
temporal self-attention motion module. This encoding is
pivotal in making the network aware of the temporal posi-
tioning of frames within a video clip. During training, we
set the maximum length of this encoding to 24 frames.

For our comparative analysis, we standardized the video
length to 24 frames. This approach allows for a balanced
evaluation of our method against the baseline model. No-
tably, in these tests, we disabled the middle-frame attention
guidance to ensure fairness in comparison.

As depicted in Fig. A4, we observed that direct inference
with 24 frames resulted in a significant decline in generation



“A large raccoon standing on a waterfall.”
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“A brown bear cub walking through a river.”
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Figure A4. Ablation analysis of temporal multi-diffusion.
When we directly apply our model to video generative fill tasks
of longer durations (specifically, 24 frames), it does not produce
out-of-distribution results (row 2 and row 5). However, there’s
a noticeable decline in the quality of the filled content when the
length of the inference video differs from the training setup, the
ear of the generated raccoon in the first case (row 2). In the second
case (row 5), the model fails to fill-in the target region with con-
tent that can seamlessly blend in with the rest area. In contrast, our
method (row 3 and row 6) effectively addresses this issue, synthe-
sizing high-quality content even for extended-duration videos.

quality. In stark contrast, the adoption of our Temporal Mul-
tiDiffusion pipeline markedly improved performance. This
pipeline effectively preserved the model’s generative qual-
ity, showcasing its robustness and adaptability to different
video durations without compromising the visual fidelity of
the generated content.

E.2. Middle-frame Attention Guidance

In this section, we conduct an ablation study to underscore
the efficacy of the middle-frame attention guidance mech-
anism introduced in our method. This study is pivotal in
demonstrating how our approach enhances temporal coher-
ence in video inpainting tasks, a challenge extensively ex-
plored in recent works [8, 9].
Attention mechanism: Tune-A-Video [9] proposes the use
of Sparse-Casual Attention (SC Attn), which calculates the
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“A MINI Cooper driving down the road.”

FF
SC
_A
ttn

M
SC
_A
ttn

Figure A5. Ablation analysis of attention guidance. We com-
pare our middle-frame attention guidance approach (MF) with
other temporal correlation modeling method variants, including
Sparse-Casual Attention (SC Attn), Middle-frame Sparse-Casual
Attention (MSC Attn), and First-frame attention guidance (FF).

attention matrix between the current frame ψi and two pre-
vious frames (ψ1 and ψi−1), as described in the following
equation:

Attention(ψi) = softmax

(
QiKiT

√
d

)
V i, (1)

where Qi = WQψi, Ki = WK
[
ψ1, ψi−1

]
, and V i =

WV
[
ψ1, ψi−1

]
. A similar technique is also adopted in

Pix2Video [1]. We adapt Sparse-Casual Attention within
each segment of our Temporal MultiDiffusion pipeline.

SC Attn can be further extended to Middle-frame
Sparse-Casual Attention (MSC Attn) by changing the an-
chor frame from the first frame within each segment to the
middle frame in the whole video, ψ⌈N ′/2⌉.
Key frame selection: Additionally, we experiment with us-
ing the first frame of the video as the guidance frame, mod-
ifying our self-attention computation as per Equ. 6 in the
main paper:

Attention(ψi) = softmax

(
QiKiT

√
d

)
V i · (1− ω)+

softmax

(
QiK1T

√
d

)
V 1 · ω.

(2)

We employ an attention guidance weight of ω = 0.3 for this
variant.
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Figure A6. Ablation analysis of mask accuracy. We explore
the robustness of our method using different mask regions. Here
we show 3 examples using “inaccurately” expanded, accurate,
and “inaccurately” eroded masks with the same prompt of “Mini
Cooper”.

Results and discussion: Our experiments, visualized in
Fig. A5, demonstrate the varying degrees of success in ad-
dressing identity shift issues. The Sparse-Casual Atten-
tion (row 2) struggles to prevent identity shifts due to us-
ing different key-frames within each segment. Middle-
frame Sparse-Casual Attention (row 3) yields better iden-
tity preservation, although inconsistencies in the generated
patterns can still be observed. The approach using the first
frame as guidance (row 4), while maintaining pattern stabil-
ity, still exhibits significant color variance between the first
and last frames.

In contrast, our proposed middle-frame attention guid-
ance mechanism (row 5) excelled in preserving both the
color and pattern on the car consistently throughout the
video. This result not only highlights the superiority of our
method in maintaining temporal coherence but also empha-
sizes the critical role of strategic frame selection in attention
guidance mechanisms for video inpainting tasks.

E.3. Test-time Masks Accuracy

Due to using random synthetic masks during training, our
model is very robust to inaccurate masks. As shown in
Fig. A6, our method can successfully inpaint the video fol-
lowing the given text prompt when the mask region is sig-
nificantly larger than the region size. However, when the
mask area can not cover the whole to-be-replaced object,
our method will fail to modify the shape of the object due
to the preservation of out-of-region details.

F. Limitations
In this section, we delve into specific instances where our
method can not yield the desired results, as illustrated in
Fig. A7. These failure cases, particularly in scenarios in-
volving complex actions, offer crucial insights into the lim-
itations of our current approach and highlight areas for fu-
ture improvement.

As shown in the first case, in an attempt to generate a
horse moving its head from left to right, our method fails
to generate plausible results. Instead of showing a smooth

“A horse wandering in the woods.”

“A lion walking through a jungle.”

Source (𝑁! = 16, 2.7 s)

Source (𝑁! = 32, 5.3 s)

Figure A7. Failure cases. We showcase where our method fails to
generate results with high fidelity. In the first case, the head of the
horse first disappears and then reappears, while in the second case
the left foot of the generated lion moving forward, it goes through
the right foot of the lion. Please refer to the video results for a
better illustration.

head movement, the generated video exhibits the head of
the horse disappearing and reappearing on the right side.
Concurrently, the body of the horse undergoes an unnat-
ural morphing, transitioning from facing left to right with
only minor shape changes. Another challenging scenario
involves a lion walking forward. The generated video inac-
curately shows the left foot of the lion moving through its
right foot, an evident deviation from natural movement. For
both cases, we recommend viewing the video results for a
more comprehensive understanding of these issues.

As noted in the main paper, these limitations are perhaps
due to that our current foundation text-to-video model lacks
high-quality motion generation capability. We believe that
enhancing the model with more advanced capabilities, es-
pecially in interpreting and rendering complex actions, can
further improve the quality. A stronger foundation model
may also offer better comprehension of intricate movements
and interactions, thereby producing more accurate and real-
istic video content.

Besides the limitations discussed above, we admit our
model fails at handling discontinuity, especially objects
moving out and back to the video. Such an issue could
be mitigated with a more deliberate cross-clip attention in-
jection mechanism, which is a critical direction to further
improve the robustness.

G. Any-length Text-to-Video Generation
In this section, we explore the application of our pro-
posed inference pipeline to existing text-to-video genera-
tion frameworks, such as AnimateDiff [3], demonstrating



its potential in facilitating any-length text-to-video genera-
tion. This exploration serves as a testament to the versatility
and adaptability of our method in broader video generation
contexts. We have included preliminary results of this ex-
tension on the accompanying webpage.

A promising direction for future research lies in the
realm of sequential storytelling through video. This in-
volves the idea of performing inference with a series of
text prompts, effectively guiding the attention mechanism
to evolve in tandem with the narrative. Such an approach
could revolutionize how stories are visually narrated, align-
ing the generated video content with a progressive textual
storyline.
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