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Supplementary Material

6. Dataset Description
This section provides supplementary information about the
datasets involved in the evaluation. The details are shown
in Tab. 8.

For real-world scenarios, three datasets are included. For
DPDD [1], the sharp-blur training pairs are collected se-
quentially by a DSLR camera with different aperture sizes.
A labeled defocus deblur dataset LFDOF [59] collected by
a light field camera is adopted in this paper as extra data
for knowledge transfer since the training pairs captured by
the light field camera have strict pixel-wise consistency
[60]. LFDOF contains many more images than DPDD,
which also benefits the microscopy deblur by transferring
rich cross-domain information. For unsupervised deblur, an
unlabeled blur dataset CUHK [63] is adopted, which is col-
lected from the internet.

Three datasets are involved in cell microscopy deblur.
BBBC006 comes from the Broad Bioimage Benchmark
Collection [44], which contains images in two sub-sets
stained by Hoechst and phalloidin captured by fluorescence
microscope. It contains images with different focal planes
(denoted as different z-stacks). Following dataset descrip-
tion [44], images collected on the optimal focal length (z-
stack = 16) are set as the ground truth, and images above
the optimal focal plane are used for training. To avoid re-
dundancy, images with z-stack = [2, 6, 10] are set as blurry
input for training. Since the images in BBBC006 only con-
tain a single grayscale channel, for EFCRex in BBBC006,
the images in LFDOF are converted into grayscale with one
channel. 3DHistech and WNLO [17] are two cell imaging
datasets for cytopathology scanned by digital scanners. The
labeled dataset 3DHistech is scanned using different focal
planes, where the focal plane with the most cells in focus is
set as the ground truth. WNLO is an unlabeled dataset with
defocus images only.

Regarding the surgical microscopy deblur, two new
datasets are presented, which are the labeled synthesized
dataset CaDISBlur and the unlabeled cataract surgery defo-
cus blur dataset CataBlur. CaDISBlur is synthesized based
on CaDIS [19], which is a dataset for surgical scene seman-
tic segmentation. Leveraging segmentation masks, the in-
struments and anatomies are blurred separately to simulate
different focal planes. The original images in CaDIS are of
high quality thus they can be treated as the sharp ground
truth. CataBlur is an unlabeled real defocus blur dataset
containing 1208 images acquired during 5 different cataract
surgeries, from which the severity of defocus blur in mi-

Table 8. Dataset description.

Scenario Dataset #Image Resolution Label

Real
world

DPDD [1] 500 1680×1120 Labeled
LFDOF [59] 12,826 1008×688 Labeled
CUHK [63] 704 ∼ 640×480 Unlabeled

Cell
microscopy

BBBC006 [44] 6144 696×520 Labeled
3DHistech [17] 94,973 256×256 Labeled

WNLO [17] 108,065 256×256 Unlabeled

Surgical
microscopy

CaDISBlur 9340 960×540 Labeled
CataBlur 1208 1280×720 Unlabeled

croscope surgery can be observed. The privacy information
is removed. The experiment’s conduction and the dataset’s
collection are granted with ethical approval. The images
in CataBlur are sampled from surgery videos with lower
frames per second (fps) to remove redundancy.

7. Supplementary Experiments
Data deficiency As addressed in Sec. 1, the data defi-
ciency in microscopy datasets can pose harm to generaliz-
ability. To further demonstrate the drawbacks brought by
data deficiency, experiments are conducted on unlabeled
microscopy datasets WNLO [17] and CataBlur regarding
two settings. For the first setting S1, the MPT is trained
on intra-domain microscopy images and tested on unla-
beled microscopy datasets, i.e., trained on 3DHistech [17]
then tested on WNLO [17], and trained on CaDISBlur then
tested on CataBlur. For S2, the MPT is trained on cross-
domain real-world images (LFDOF [59]) and tested on
unlabeled microscopy datasets.

The deblur results are shown in Fig. 6, from which it
can be observed that the model trained with cross-domain
real-world dataset (S2) leads to fewer artifacts and more
fine details in its deblurred results than the model trained
with intra-domain microscopy dataset (S1). This phe-
nomenon proves the existence of data deficiency in mi-
croscopy dataset, i.e., the model trained with microscopy
dataset suffers from poor generalizability caused by the in-
sufficient features contained in microscopy dataset. From
visualization of S2, the necessity of learning cross-domain
rich deblur guidance is also proved.

Ablation studies on CSWA and FEFN Additional abla-
tion studies regarding the structure of the proposed CSWA
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Figure 6. Illustration of models trained with data deficient microscopy dataset (S1) and data sufficient real-world dataset (S2), including
unlabeled dataset WNLO [17] (left) and CataBlur (right). Even if the model is trained with intra-domain microscopy data (S1), the deblur
restoration turns out to be trivial for CataBlur, or even brings strong artifacts for WNLO. As for S2, the deblur result tends to have fewer
artifacts, and more fine details are restored. It proves the existence of data deficiency problem and the necessity of learning cross-domain
knowledge.
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Figure 7. Downsampling module adopted in CSWA.
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Figure 8. Baseline and variant design of ablation studies for FEFN.
VFEFN1 is the reversed structure (V3) shown in Tab. 4

and FEFN are conducted. The results are shown in Tab. 9.
For the downsampling module adopted in CSWA (Fig. 7),
a series of variants are evaluated, including variant without
shortcut connection (Vds1), the variant without linear pro-
jection and shortcut connection (Vds2), and variants chang-
ing the downsampling operation from strided average pool-
ing to strided maximum pooling (Vds3), strided convolu-
tion (Vds4), and bicubic interpolation (Vds5). The results
in Tab. 9 show that the current baseline outperforms the
variants in most of the situations. Although Vds5, which

Table 9. Ablation studies on CSWA and FEFN. ∆PSNR refers to
the change in PSNR compared with the MPT baseline.

Configuration ∆PSNRD ∆PSNRB ∆PSNRC

Vds1 (w/o shortcut) -0.14 -0.02 -0.15
Vds2 (w/o linear) -0.05 -0.04 -0.07
Vds3 (max pooling) -0.37 -0.49 -0.63
Vds4 (convolution) -0.03 -0.09 -0.06
Vds5 (interpolate) -0.01 +0.02 -0.04
Vw/o NPC -0.09 -0.07 -0.12
Vw/o sw -0.06 -0.13 -0.09

VFEFN1 -0.23 -0.17 -0.48
VFEFN2 -0.09 -0.12 -0.15
VFEFN3 -0.60 -0.74 -0.91
VFEFN4 -0.24 -0.31 -0.20

adopts bicubic interpolation, achieves almost the same per-
formance as the baseline or even trivial improvement, it
leads to complex computation that hinders parallel training
and inference. Ablation studies on NPConv and shifting
window mechanism in CSWA are also carried out, which
are denoted by Vw/o NPC and Vw/o sw, respectively. The
results demonstrate the superiority of our design.

Going further from the experiments in Sec. 4.4, more
ablation studies regarding the asymmetric activation mech-
anism and shortcut connection in FEFN are conducted, in-



cluding four variants as shown in Fig. 8. Based on the re-
sult reported in Tab. 9, it can be concluded that the base-
line structure adopted in this paper achieves the best perfor-
mance among all the variants.

Ablation studies on pyramid scales Following the de-
scription in Sec. 4.1 to keep the sub-block number, feature
dimensions, and attention heads unchanged, ablation stud-
ies on pyramid scales (Si) are carried out regarding variants
with similar FLOPs and parameters:

1) V1: S1 = S2 = S3 = S4 = [1, 1, 1, 1, 1, 1]. In
this variant, CSWA actually downgrades to the original WA
(the variant with WA+ISCA shown in Tab. 3), and the image
pyramid is not constructed.

2) V2: S1 = [ 1
16 ,

1
16 ,

1
8 ,

1
8 , 1, 1], S2 = [ 18 ,

1
8 ,

1
4 ,

1
4 , 1, 1],

S3 = S4 = [ 14 ,
1
4 ,

1
2 ,

1
2 , 1, 1]. This variant explores the pyra-

mid structure with smaller scales than the baseline.
3) V3: S1 = [ 14 ,

1
4 ,

1
2 ,

1
2 , 1, 1], S2 = [ 12 ,

1
2 ,

1
2 ,

1
2 , 1, 1],

S3 = S4 = [ 12 ,
1
2 ,

1
2 ,

1
2 , 1, 1]. This variant adopts larger-

scale pyramids than the baseline.
As shown by the results in Tab. 10, all the variants lead to

performance drops. For V1 with no pyramid structure, sig-
nificant performance degradation is observed on BBBC006,
which is the dataset with one of the longest attention spans.
A similar phenomenon is observed in SwinIR [38] that does
not feature a multi-scale pyramid. It achieves inferior per-
formance on BBBC006 as shown in Tab. 1. These together
prove the effectiveness of our multi-pyramid design, espe-
cially for the microscopy deblur tasks. The performance
degradation in V2 and V3 shows the superiority of the pyra-
mid scales in the baseline model.

Table 10. Ablation studies on pyramid scales.

Pyramid ∆PSNRD ∆PSNRB ∆PSNRC

V1 -0.08 -0.79 -0.20
V2 -0.05 -0.02 -0.07
V3 -0.01 -0.04 -0.03

Additional visualization Demonstrations of supervised
real-world deblur are shown in Fig. 10 for labeled datasets
DPDD [1]. Illustrations of unsupervised deblur on mi-
croscopy dataset and real-world dataset are provided in
Fig. 11a and Fig. 11b, respectively. The visualization
proves that our method achieves the best performance on
microscopy datasets and real-world datasets regarding var-
ious patterns in both supervised and unsupervised scenar-
ios. More visualizations of the results of cell detection on
BBBC006 [44] and surgical scene semantic segmentation
on CaDISBlur are provided in Fig. 12, from which it can be
concluded that the downstream tasks results on deblurred

images from our method achieves more satisfactory out-
comes.



(a) Examples for CaDISBlur dataset, where the top row is the original sharp images (ground truth), the middle row and bottom row are the corresponding
blurry images with the focal plane on instruments (blurry anatomies) or anatomies (blurry instruments), respectively.

(b) Examples for CataBlur dataset, which is an unlabeled dataset containing only defocus images.

Figure 9. Examples of samples in CaDISBlur and CataBlur.
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Figure 10. Visualization of deblur on DPDD [1] dataset. As the comparison shows, our MPT achieves the best deblur performance in
real-world scenes, restoring most of the small-scale fine details and large-scale patterns. With the help of EFCRex, the performance is
further enhanced. It shows the superiority and generalizability of our framework.



Defocus Restormer GRL MPT MPT+EFCRex

(a) Visualization of deblur on WNLO [17] (top) and CataBlur (bottom) datasets.

Defocus Restormer GRL MPT MPT+EFCRex

(b) Visualization of deblur on CUHK [63] dataset.

Figure 11. Visualization of unsupervised deblur on CataBlur, WNLO [17], and CUHK [63]. The proposed framework achieves the best
unsupervised deblur performance on both microscopy datasets and real-world datasets, showing high generalizability. By further applying
EFCRex, the deblur performance is significantly enhanced, proving the effectiveness of the proposed EFCR for knowledge transfer.



Defocus image Segmentation on defocus image Segmentation on image 
deblurred by GRL 

Segmentation on image 
deblurred by MPT+EFCRex 

Segmentation on sharp image

Figure 12. Results of downstream tasks on BBBC006 [44] (top) and CaDISBlur (bottom). For BBBC006, our method can restore precise
cell shape with sharper outline, achieving more accurate segmentation and detection. For CaDISBlur, the deblurred images by our frame-
work contain more differentiable features, leading to more accurate semantic segmentation in both anatomies and instruments. (Colormap:

Pupil, Iris, surgeon’s hand, Cornea, Skin, Surgical tape, Eye retractors, Instruments)
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