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A. More Details for the Method

Implementation Details We implemented our method
with PyTorch [62] and used the Adam optimizer [38] with
a learning rate of 0.001 for the hash-grid and 0.01 for the
semantic and instance MLPs. We combine the tri-plane
features [99] and a cuboid hash-grid proposed by Street-
Surf [28], as a backbone for geometry reconstruction. The
hash-grid was trained with a hash level of L = 16, the
highest resolution of R = 8192, and a hash table size of
T = 222. The architectures of the semantic and instance
networks are identical, each consists of a 5-layer MLP with
128 channels. Moreover, for a scene represented by a vol-
ume of [0, 1], we raise the altitude of all cameras by displac-
ing each camera in the opposite direction of the camera’s
focal point with an offset of 0.3, during the scale-adaptive
semantic label fusion. The geometry-guided instance fil-
tering threshold is empirically set to 10 meters (in physical
space) for all testing scenes.

A.1. Cross-view Instance Label Grouping

Figure III illustrates cases of Cross-view Instance Label
Grouping on the Longhua-1 and Yingrenshi datasets. For
example, in the SAM instance label, mask blocks A, B,
and C belong to the same building but are segmented as
three distinct instances, introducing ambiguity in the super-
vision label during training. This can result in two pixels
from the same building being incorrectly labeled as differ-
ent instances. In contrast, with our cross-view instance label
grouping, separated blocks of the same instance are merged
into the same group (e.g., group1: {A, B, C}; group2: {D,
E}), guiding the training of the instance field more effec-
tively. Specifically, during training, we randomly select
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Figure I. Effect of altitude offset in semantic fusion strategy.
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Figure II. Effect of geometry-guided instance filtering threshold.

a single instance from each group (e.g., blocks A and D
in the SAM label) to reduce the occurrence of conflicts.
The pseudo-code for the proposed cross-view instance la-
bel grouping is shown in Algorithm 1.

A.2. Mask2Former Semantic Label Mapping

Following Panoptic-Lift [70], we employ the universal 2D
segmentation method, Mask2Former [13], to obtain seman-
tic labels and utilize the implementation1 with test-time
augmentation. The original Mask2former provides pre-
trained models on various datasets, including COCO [48],
Cityscapes [17], ADE20K [102], et al. We observed that the
model trained on the ADE20K dataset (swin large IN21k
model) demonstrates robust performance for semantic seg-
mentation of aerial images. For training, we map the
ADE20K classes (150 classes in total) into four categories:
Building, road, car, and tree. Additionally, we marked the
category from the 150 classes that may not appear in aerial
images as Cluster (e.g., indoor objects), mitigating interfer-
ence from inaccurate segmentation results of Mask2former.

Moreover, during the processing of the scale-adaptive se-
mantic label fusion, the images with the original size are
cropped into four parts to obtain segmentation results, as
feeding the entire image may lead to out-of-memory errors.
Then, the car and tree segmentation results from the down-
scaled images of Mask2Former are substituted.

A.3. Effect of Hyper-parameter

Setting of far view in semantic fusion. For a scene rep-
resented by a volume of [0, 1], we raise the altitude of all

1An implementation of Mask2former with test-time augmentation:
https://github.com/nihalsid/Mask2Former.

https://github.com/nihalsid/Mask2Former
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Figure III. Illustration of Cross-view Instance Label Grouping. Different colors represent different instances. SAM [39] produces over-
segmented masks and an instance might be segmented into different blocks (e.g., A, B, and C belong to the same building but are incorrectly
divided into different instances). Our cross-view instance label grouping alleviates this problem, reducing the conflict of 2D instance
supervision during training.

Algorithm 1 Pseudo code for the cross-view instance label grouping strategy.

Require: N images with SAM masks Hi for each i-th view
Ensure: Cross-view guidance map Ui for each view

1: for i = 1 to N do
2: Project SAM masks from all other views onto the i-th view: {Hj→i|j = 1, . . . , N, j ̸= i}
3: for each instance mask Hk

i in the i-th view do
4: for each instance mask Hl

j→i in projected mask Hj→i do

5: if |Hk
i ∩Hl

j→i|
min(|Hk

i |,|Hl
j→i|)

> τ then

6: expanded mask: Hk
i∪j .append(Hl

j→i)
7: end if
8: end for
9: Combine all Hk

i∪j to form cross-view mask Uk
i : Uk

i =
⋃

j ̸=i H
k
i∪j

10: end for
11: Organize cross-view masks in ascending order based on area
12: Sequentially layer cross-view masks onto map H ×W to form Ui

13: end for

cameras by displacing each camera in the opposite direction
of the camera’s focal point with an offset of 0.3. Figure I
shows that the scale-adaptive semantic fusion consistently
enhances the results of Mask2Former and remains effective
across various offset values. This strategy is inspired by
the observation that large object recognition benefits from a

larger receptive field, leading to more reliable segmentation.

Geometry-guided instance filtering. The geometry-
guided instance filtering threshold is empirically set to 10
meters (in physical space) for all testing scenes. Figure II
shows that applying the filtering can improve results against
w/o filter, and the filtering works effectively in the range of



[5, 15] meters.

B. Details for the Instance Field Optimization
Our building instance segmentation method is built upon
the 2D image segmentation method. In selecting the
base model for 2D image segmentation, we considered
SAM [39] and Detectron [87]. During our testing, we
found that Detectron did not perform well on aerial images
for building segmentation. Consequently, we experimented
with Detectron2-SpaceNet [43], which is fine-tuned on the
SpaceNet dataset [81] and based on the Mask-RCNN model
from Detectron [87]. While its segmentation performance
showed improvement, it did not generalize well to diverse
urban scenes (refer to Figure 3 of the main paper). There-
fore, we decided to build our model upon the SAM model.

As stated in the paper, we utilize two methods to achieve
the 3D building instance segmentation: linear assign-
ment from Panoptic-Lift [70] and contrastive learning from
Contrastive-Lift [4].
Linear Assignment2 2D machine-generated instance la-
bels are noisy and view-inconsistent, for which Panoptic-
Lift [70] proposes to map them into 3D surrogate identi-
fiers, and finds out the most compatible injective mapping
by solving a linear assignment problem. Let U (r) denotes
the instance segment label of the pixel casting ray r, Rk the
subset of rays in R that belong to 2D instance k ∈ KI, and
KR ⊆ KI the subset of 2D instances that are represented in
the batch of rays R, the optimal injective mapping is then
given by:

Π⋆
R = argmax

ΠR

∑
k∈KR

∑
r∈Rk

S̃(r)(ΠI(U(r)))

|Rk|
(7)

where S̃(r)(ΠI(U(r))) denotes the ΠI(U(r))-th element of
the instance label vector S̃(r).

Thus the instance loss can be formulated as follows:

Linstance = − 1

|R|
∑
r∈R

wr log S̃(r)(Π⋆
R(U(r))) (8)

where wr is the prediction confidence.

Contrastive Learning3

Instead of aligning labels extracted from multiple views,
Contrastive-Lift [4] directly learns embeddings from the
noisy 2D machine-generated labels via optimizing a con-
trastive loss and acquires the instance segments by simply
clustering the embeddings. The instance loss can be formu-
lated as follows:

Linstance = Lsf + Lconc (9)
2We utilize the official implementation from Panoptic-Lift: https:

//github.com/nihalsid/panoptic-lifting.
3We utilize the official implementation from Contrastive-Lift: https:

//github.com/yashbhalgat/Contrastive-Lift.

where the first item Lsf is the contrastive loss using a slow-
fast learning scheme, and the second item Lconc is the con-
centration loss used to encourage the embeddings to form
concentrated clusters for each object.

Specifically, given the two non-overlapping subsets
R1and R2 partitioned from rays in R, the contrastive loss
function is:

Lsf = − 1

|R1|
·

∑
r∈R1

log

∑
r′∈R2

1U(r)=U(r′) exp
(
sim

(
S̃(r), S(r′); γ

))
∑

r′∈R2
exp

(
sim

(
S̃(r), S(r′); γ

))
(10)

where 1 is the indication function, sim (x, x′; γ) =

exp
(
−γ ∥x− x′∥2

)
is used to compute the similarity be-

tween embeddings in Euclidean space, and S(r′) is the
instance label inferred by the slowly-updated embedding
field [4].

And the concentration loss function is:

Lconc =
1

|R1|
∑
r∈R1

∥∥∥∥∥S̃(r)−
∑

r′∈R2
1U(r)=U(r′)S(r

′)∑
r′∈R2

1U(r)=U(r′)

∥∥∥∥∥
2

(11)
For clustering, we use HDBSCAN [55] clustering in ex-

periments following Contrastive-Lift [4]. We sample all
rays in the testing images and then randomly select 200000
pixels of building for clustering, with the minimum cluster
size set to 1000.

C. More Details for the Dataset
C.1. Dataset Selection

We evaluate our method on UrbanBIS dataset [92], which
provides 3D building-level instance annotations and 3D se-
mantic segmentation annotations of six categories, includ-
ing buildings, roads, cars, and trees. We select four re-
gions with a high density of building instances and vari-
ous architecture styles, namely Yingrenshi, Yuehai-Campus,
Longhua-1, and Longhua-2. Figure IV shows the bird’s eye
view of the four mentioned areas, which are covered by a
diverse range of architectural instances.

C.2. Ground-truth Label for Evaluation

2D ground-truth label for each view is acquired by project-
ing the 3D point cloud annotations. Specifically, UrbanBIS
dataset [92] provides 3D point cloud annotations for seman-
tic and instance segmentation, along with 2D aerial images.
However, individual 2D annotations for semantic and in-
stance segmentation are not provided for each image, and
camera poses for projections onto 2D images are also not

https://github.com/nihalsid/panoptic-lifting
https://github.com/nihalsid/panoptic-lifting
https://github.com/yashbhalgat/Contrastive-Lift
https://github.com/yashbhalgat/Contrastive-Lift
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Figure IV. Bird’s eye view of the Yingrenshi, Yuehai-Campus, Longhua-1 and Longhua-2 areas in UrbanBIS dataset [47].

available. Moreover, the point cloud given by UrbanBIS
is sparse, resulting in unsatisfactory projections on 2D im-
ages.

To address these limitations, we reconstruct a dense
point cloud and corresponding camera poses from the 2D
aerial images. Subsequently, we register the reconstructed
point cloud with the annotated UrbanBIS point cloud us-
ing CloudCompare and annotate our reconstructed points
by employing KD-tree [3] algorithm to find out the labels
of the nearest annotated points in the UrbanBIS point cloud
from ours. This process allows us to obtain annotations for
the dense point cloud with known camera poses, which are
then projected onto 2D images, yielding 2D image annota-
tions.

It is important to note that we made modifications to the
original annotations for two reasons. Firstly, the ground-
truth annotations are not sufficiently accurate, mainly re-
garding missing annotations of cars. Secondly, for the
Yuehai-Campus area, UrbanBIS has not provided corre-
sponding 2D aerial images so far. We then utilized images
from the UrbanScene dataset [47], which covers the Yuehai-
Campus region but with a significant time gap compared to
the UrbanBIS dataset [92]. Consequently, there are sub-
stantial discrepancies in the distribution of cars and trees
between the UrbanBIS point cloud and our point cloud re-
constructed from UrbanScene dataset [47]. As modifying
annotations on the point cloud would be time-consuming,

Semantic-NeRF(M2F) Ours GT

Figure V. Visual results on UAVid dataset.

Table I. Comparison on UAVid dataset.

Method
Sequence #14 Sequence #31

mIoU Building mIoU Building

Mask2former 64.9 74.9 57.8 73.3
Semantic-NeRF (M2F) 69.7 91.5 58.0 87.5
Ours 74.1 92.8 61.9 88.8

we use the labeling tool ISAT [95] to fix the 2D testing im-
age annotations.

D. More Results
D.1. Semantic Segmentation on UAVid Dataset

To further evaluate the effectiveness of our method, we
conduct experiments on the UAVid dataset, which contains
2D semantic labels for sparse frames. We conducted ad-
ditional evaluations of semantic segmentation by choos-
ing two video sequences for which the camera trajectory
has a wide coverage area and can be reconstructed using
COLMAP. The results presented in Table I and Figure V



Method Yingrenshi Yuehai-Campus Longhua-1 Longhua-2

RandLA-Net [34] 42.7 39.4 50.2 54.7
Ours 62.9 55.7 66.5 66.0

Table II. Comparison with the point-based method. The reported
values are 3D mIoU.

highlight that our method outperforms the baseline meth-
ods, demonstrating the effectiveness of our semantic fusion
strategy.

D.2. Comparison with Point-based Method

As there are no existing NeRF methods for aerial under-
standing, we adapt Semantic-NeRF to have the same back-
bone as ours to have a fair comparison. To further vali-
date the effectiveness of our method, we compare it with
the SOTA point-based method [31] on point cloud segmen-
tation (during inference, the input is the GT point cloud).
The model is trained on the SensatUrban dataset [33]. For
our method, we query the 3D point coordinates in the se-
mantic field to obtain its predicted category. Table II shows
that our method achieves more accurate results.

D.3. More Visualization Results

Figure VI shows more qualitative semantic segmentation re-
sults on the UrbanBIS dataset.

E. Limitation
Our method relies on a pre-trained 2D segmentation model
and the SAM model to generate 2D labels. The failure of 2D
methods will affect the final results. Moreover, our method
needs a per-scene optimization for scene parsing.
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(1) Comparison on Yuehai-Campus
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Figure VI. Qualitative comparison of semantic segmentation on Yuehai-Campus and Longhua-1 from UrbanBIS dataset (Building: Red,
Road: White, Car: Violet, Tree: Green, unrecognized areas of Mask2former: Black). The areas without masks have no GT annotation in
(e). Moreover, we present the novel-view synthesis results of our method.
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